YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    CISK or WISHE as the Mechanism for Tropical Cyclone Intensification

    Source: Journal of the Atmospheric Sciences:;1996:;Volume( 053 ):;issue: 023::page 3528
    Author:
    Craig, George C.
    ,
    Gray, Suzanne L.
    DOI: 10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Examination of conditional instability of the second kind (CISK) and wind-induced surface heat exchange (WISHE), two proposed mechanisms for tropical cyclone and polar low intensification, suggests that the sensitivity of the intensification rate of these disturbances to surface properties, such as surface friction and moisture supply, will be different for the two mechanisms. These sensitivities were examined by perturbing the surface characteristics in a numerical model with explicit convection. The intensification rate was found to have a strong positive dependence on the heat and moisture transfer coefficients, while remaining largely insensitive to the frictional drag coefficient. CISK does not predict the observed dependence of vortex intensification rate on the heat and moisture transfer coefficients, nor the insensitivity to the frictional drag coefficient since it anticipates that intensification rate is controlled by frictional convergence in the boundary layer. Since neither conditional instability nor boundary moisture content showed any significant sensitivity to the transfer coefficients, this is true of CISK using both the convective closures of Ooyama and of Charney and Eliassen. In comparison, the WISHE intensification mechanism does predict the observed increase in intensification rate with heat and moisture transfer coefficients, while not anticipating a direct influence from surface friction.
    • Download: (1.095Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      CISK or WISHE as the Mechanism for Tropical Cyclone Intensification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158276
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorCraig, George C.
    contributor authorGray, Suzanne L.
    date accessioned2017-06-09T14:34:13Z
    date available2017-06-09T14:34:13Z
    date copyright1996/12/01
    date issued1996
    identifier issn0022-4928
    identifier otherams-21888.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158276
    description abstractExamination of conditional instability of the second kind (CISK) and wind-induced surface heat exchange (WISHE), two proposed mechanisms for tropical cyclone and polar low intensification, suggests that the sensitivity of the intensification rate of these disturbances to surface properties, such as surface friction and moisture supply, will be different for the two mechanisms. These sensitivities were examined by perturbing the surface characteristics in a numerical model with explicit convection. The intensification rate was found to have a strong positive dependence on the heat and moisture transfer coefficients, while remaining largely insensitive to the frictional drag coefficient. CISK does not predict the observed dependence of vortex intensification rate on the heat and moisture transfer coefficients, nor the insensitivity to the frictional drag coefficient since it anticipates that intensification rate is controlled by frictional convergence in the boundary layer. Since neither conditional instability nor boundary moisture content showed any significant sensitivity to the transfer coefficients, this is true of CISK using both the convective closures of Ooyama and of Charney and Eliassen. In comparison, the WISHE intensification mechanism does predict the observed increase in intensification rate with heat and moisture transfer coefficients, while not anticipating a direct influence from surface friction.
    publisherAmerican Meteorological Society
    titleCISK or WISHE as the Mechanism for Tropical Cyclone Intensification
    typeJournal Paper
    journal volume53
    journal issue23
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2
    journal fristpage3528
    journal lastpage3540
    treeJournal of the Atmospheric Sciences:;1996:;Volume( 053 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian