YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microphysical Processes Associated with Intense Frontal Rainbands and the Effect of Evaporation and Melting on Frontal Dynamics

    Source: Journal of the Atmospheric Sciences:;1996:;Volume( 053 ):;issue: 011::page 1569
    Author:
    Barth, Mary C.
    ,
    Parsons, David B.
    DOI: 10.1175/1520-0469(1996)053<1569:MPAWIF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Previous studies have shown that a surface cold front often coincides with a heavy band of precipitation commonly designated as a narrow cold-frontal rainband. The maximum rainfall rate within this band can exceed 100?200 mm h?1. This study uses a nonhydrostatic two-dimensional cloud model with ice microphysics to investigate the precipitation processes within this type of rainband. Despite the relatively simple initialization and two-dimensionality, many aspects of these storms were well simulated. In these simulations, the intense but shallow updrafts produced large amounts of cloud water that were transformed primarily into rain and graupel within the zone of heavy precipitation and, to a lesser extent, into snow. The graupel and snow produced a zone of trailing stratiform precipitation. While the heavy rainfall could be represented in a warm rain model of the storm, an ice phase was needed in order to replicate the stratiform precipitation. Feedbacks of microphysical processes upon the dynamics of the flow were investigated. Sublimation and melting of frozen hydrometeors produced a pronounced cooling within the cold air mass, which slowly increased the depth and intensity of the cold air mass. This diabatic cooling within the cold air could potentially play a role in maintaining or even intensifying the circulations that lead to these rainbands. Previous studies of these types of fronts have instead concentrated on the role of melting in maintaining these structures through producing a stable layer across the cold air interface that could inhibit mixing.
    • Download: (1.512Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microphysical Processes Associated with Intense Frontal Rainbands and the Effect of Evaporation and Melting on Frontal Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158143
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBarth, Mary C.
    contributor authorParsons, David B.
    date accessioned2017-06-09T14:33:52Z
    date available2017-06-09T14:33:52Z
    date copyright1996/06/01
    date issued1996
    identifier issn0022-4928
    identifier otherams-21768.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158143
    description abstractPrevious studies have shown that a surface cold front often coincides with a heavy band of precipitation commonly designated as a narrow cold-frontal rainband. The maximum rainfall rate within this band can exceed 100?200 mm h?1. This study uses a nonhydrostatic two-dimensional cloud model with ice microphysics to investigate the precipitation processes within this type of rainband. Despite the relatively simple initialization and two-dimensionality, many aspects of these storms were well simulated. In these simulations, the intense but shallow updrafts produced large amounts of cloud water that were transformed primarily into rain and graupel within the zone of heavy precipitation and, to a lesser extent, into snow. The graupel and snow produced a zone of trailing stratiform precipitation. While the heavy rainfall could be represented in a warm rain model of the storm, an ice phase was needed in order to replicate the stratiform precipitation. Feedbacks of microphysical processes upon the dynamics of the flow were investigated. Sublimation and melting of frozen hydrometeors produced a pronounced cooling within the cold air mass, which slowly increased the depth and intensity of the cold air mass. This diabatic cooling within the cold air could potentially play a role in maintaining or even intensifying the circulations that lead to these rainbands. Previous studies of these types of fronts have instead concentrated on the role of melting in maintaining these structures through producing a stable layer across the cold air interface that could inhibit mixing.
    publisherAmerican Meteorological Society
    titleMicrophysical Processes Associated with Intense Frontal Rainbands and the Effect of Evaporation and Melting on Frontal Dynamics
    typeJournal Paper
    journal volume53
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1996)053<1569:MPAWIF>2.0.CO;2
    journal fristpage1569
    journal lastpage1586
    treeJournal of the Atmospheric Sciences:;1996:;Volume( 053 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian