YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameterization of Solar Near-Infrared Radiative Properties of Cloudy Layers

    Source: Journal of the Atmospheric Sciences:;1996:;Volume( 053 ):;issue: 011::page 1559
    Author:
    Espinoza, Raymond C.
    ,
    Harshvardhan
    DOI: 10.1175/1520-0469(1996)053<1559:POSNIR>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The process of finding computationally efficient methods to parameterize the effects of the radiative interactions between water vapor absorption and cloud droplet absorption is fraught with complications. Inside a cloud, scattering greatly enhances the vapor absorption, and the amount of vapor above the cloud layer influences the absorption in a cloud layer. A widely used technique used to treat water vapor and liquid absorption is through the use of the k-distribution method. In the current study, this method is used with a one- and a three-band model to produce absorptances, reflectances, and transmittances of cloudy layers in the near infrared, but unlike standard usage, the single scattering properties are assigned to individual k values from weighting with the k distribution in the limit of semi-infinite and thin clouds, as well as the square root of the co-albedo. While improvement in the accuracy of the radiative parameters is noted for the three-band model as compared to standard three-band models, the one-band model with the square root approximation is very successful in producing absorptances, reflectances, and transmittances that are shown to be on the same order of accuracy as those produced by the three-band models with average single scattering properties. This method shows promise as a useful computational tool in general circulation models since it reduces the number of times the typical two-stream computation needs to be carried out or, alternately, provides more accurate results for the same computational effort as standard models.
    • Download: (826.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameterization of Solar Near-Infrared Radiative Properties of Cloudy Layers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158142
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorEspinoza, Raymond C.
    contributor authorHarshvardhan
    date accessioned2017-06-09T14:33:52Z
    date available2017-06-09T14:33:52Z
    date copyright1996/06/01
    date issued1996
    identifier issn0022-4928
    identifier otherams-21767.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158142
    description abstractThe process of finding computationally efficient methods to parameterize the effects of the radiative interactions between water vapor absorption and cloud droplet absorption is fraught with complications. Inside a cloud, scattering greatly enhances the vapor absorption, and the amount of vapor above the cloud layer influences the absorption in a cloud layer. A widely used technique used to treat water vapor and liquid absorption is through the use of the k-distribution method. In the current study, this method is used with a one- and a three-band model to produce absorptances, reflectances, and transmittances of cloudy layers in the near infrared, but unlike standard usage, the single scattering properties are assigned to individual k values from weighting with the k distribution in the limit of semi-infinite and thin clouds, as well as the square root of the co-albedo. While improvement in the accuracy of the radiative parameters is noted for the three-band model as compared to standard three-band models, the one-band model with the square root approximation is very successful in producing absorptances, reflectances, and transmittances that are shown to be on the same order of accuracy as those produced by the three-band models with average single scattering properties. This method shows promise as a useful computational tool in general circulation models since it reduces the number of times the typical two-stream computation needs to be carried out or, alternately, provides more accurate results for the same computational effort as standard models.
    publisherAmerican Meteorological Society
    titleParameterization of Solar Near-Infrared Radiative Properties of Cloudy Layers
    typeJournal Paper
    journal volume53
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1996)053<1559:POSNIR>2.0.CO;2
    journal fristpage1559
    journal lastpage1568
    treeJournal of the Atmospheric Sciences:;1996:;Volume( 053 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian