YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Gravity Wave Variance in LIMS Temperatures. Part II: Comparison with the Zonal-Mean Momentum Balance

    Source: Journal of the Atmospheric Sciences:;1996:;Volume( 053 ):;issue: 003::page 398
    Author:
    Fetzer, Eric J.
    ,
    Gille, John C.
    DOI: 10.1175/1520-0469(1996)053<0398:GWVILT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Zonal-mean gravity wave variance in the Limb Infrared Monitor of the Stratosphere (LIMS) temperature data is seen to correlate strongly with the residual term in the LIMS zonal-mean momentum budget throughout much of the observed mesosphere. This momentum residual is attributed to gravity wave momentum transport at scales that cannot be directly sampled by the LIMS instrument Correlation is highest in the vicinity of the fall and winter mesospheric jets, where both gravity wave variance and momentum residual reach their largest values. Correlation is also high in the Southern Hemisphere subtropical mesophere, where gravity wave variance and the momentum residual have broad temporal maxima during the easterly acceleration of the stratopause semi-annual oscillation (SAO). This subtropical correlation has important implications for the SAO eastward acceleration, which several studies suggest is forced by gravity wave momentum flux divergence. Correlation between gravity wave variance and inferred gravity wave momentum flux divergence is unexpected because variance is dominated by large scales and long periods (inertio?gravity waves), while both theoretical arguments and ground-based observations indicate that momentum transport is dominated by periods under 1 h. The results of this study suggest a broadband gravity wave field experiencing forcing and loss processes, which are largely independent of frequency.
    • Download: (1.063Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Gravity Wave Variance in LIMS Temperatures. Part II: Comparison with the Zonal-Mean Momentum Balance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158057
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFetzer, Eric J.
    contributor authorGille, John C.
    date accessioned2017-06-09T14:33:41Z
    date available2017-06-09T14:33:41Z
    date copyright1996/02/01
    date issued1996
    identifier issn0022-4928
    identifier otherams-21690.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158057
    description abstractZonal-mean gravity wave variance in the Limb Infrared Monitor of the Stratosphere (LIMS) temperature data is seen to correlate strongly with the residual term in the LIMS zonal-mean momentum budget throughout much of the observed mesosphere. This momentum residual is attributed to gravity wave momentum transport at scales that cannot be directly sampled by the LIMS instrument Correlation is highest in the vicinity of the fall and winter mesospheric jets, where both gravity wave variance and momentum residual reach their largest values. Correlation is also high in the Southern Hemisphere subtropical mesophere, where gravity wave variance and the momentum residual have broad temporal maxima during the easterly acceleration of the stratopause semi-annual oscillation (SAO). This subtropical correlation has important implications for the SAO eastward acceleration, which several studies suggest is forced by gravity wave momentum flux divergence. Correlation between gravity wave variance and inferred gravity wave momentum flux divergence is unexpected because variance is dominated by large scales and long periods (inertio?gravity waves), while both theoretical arguments and ground-based observations indicate that momentum transport is dominated by periods under 1 h. The results of this study suggest a broadband gravity wave field experiencing forcing and loss processes, which are largely independent of frequency.
    publisherAmerican Meteorological Society
    titleGravity Wave Variance in LIMS Temperatures. Part II: Comparison with the Zonal-Mean Momentum Balance
    typeJournal Paper
    journal volume53
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1996)053<0398:GWVILT>2.0.CO;2
    journal fristpage398
    journal lastpage410
    treeJournal of the Atmospheric Sciences:;1996:;Volume( 053 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian