YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Accuracies of Crossover and Parallel-Track Estimates of Geostrophic Velocity from TOPEX/Poseidon and Jason Altimeter Data

    Source: Journal of Atmospheric and Oceanic Technology:;2003:;volume( 020 ):;issue: 008::page 1196
    Author:
    Schlax, Michael G.
    ,
    Chelton, Dudley B.
    DOI: 10.1175/1520-0426(2003)020<1196:TAOCAP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Mean-squared errors of surface geostrophic velocity estimates from the crossover and parallel-track methods are calculated for altimeters in the Ocean Topography Experiment (TOPEX)/Poseidon and Jason orbits. As part of the crossover method analysis, the filtering properties and errors of cross-track speed estimates are examined. Velocity estimates from both the crossover and parallel-track methods have substantial mean-squared errors that exceed 20% of the signal standard deviation, differ systematically between the zonal and meridional components, and vary with latitude. The measurement errors on the zonal and meridional velocity component estimates from both methods increase at low latitudes owing to the inverse dependence of geostrophic velocity on the Coriolis parameter. Additional latitudinal variations result for the parallel-track method because of the poleward convergence of the satellite ground tracks and the presence of orbit error, and for the crossover method because of the changing angle between the ascending and descending ground tracks. At high latitudes, parallel-track estimates, have elevated measurement errors in both components, while only the zonal component is so affected for the crossover method. Along-track smoothing is efficient for mitigating measurement errors for crossover estimates, and the filtering properties of the smoothed estimates are simply related to the spectrum of cross-track speeds. Such smoothing is less effective for parallel-track estimates, and the filtering properties are more difficult to characterize because of the sampling geometry and the convergence of the parallel ground tracks at high latitudes. If suitable along-track smoothing is applied in the crossover method, root-mean-squared errors (rmse's) of about 30% or less of the signal standard deviation can be obtained for each orthogonal velocity component over the latitude range 5°?60°. With 2-cm orbit errors, the parallel-track method yields estimates of the meridional velocity component with errors that exceed 40% at all latitudes. If orbit errors can be reduced to 1-cm standard deviation, the parallel-track method yields an rmse smaller than 30% in both orthogonal components for the latitude range 5°?55°.
    • Download: (535.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Accuracies of Crossover and Parallel-Track Estimates of Geostrophic Velocity from TOPEX/Poseidon and Jason Altimeter Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157934
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorSchlax, Michael G.
    contributor authorChelton, Dudley B.
    date accessioned2017-06-09T14:33:23Z
    date available2017-06-09T14:33:23Z
    date copyright2003/08/01
    date issued2003
    identifier issn0739-0572
    identifier otherams-2158.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157934
    description abstractMean-squared errors of surface geostrophic velocity estimates from the crossover and parallel-track methods are calculated for altimeters in the Ocean Topography Experiment (TOPEX)/Poseidon and Jason orbits. As part of the crossover method analysis, the filtering properties and errors of cross-track speed estimates are examined. Velocity estimates from both the crossover and parallel-track methods have substantial mean-squared errors that exceed 20% of the signal standard deviation, differ systematically between the zonal and meridional components, and vary with latitude. The measurement errors on the zonal and meridional velocity component estimates from both methods increase at low latitudes owing to the inverse dependence of geostrophic velocity on the Coriolis parameter. Additional latitudinal variations result for the parallel-track method because of the poleward convergence of the satellite ground tracks and the presence of orbit error, and for the crossover method because of the changing angle between the ascending and descending ground tracks. At high latitudes, parallel-track estimates, have elevated measurement errors in both components, while only the zonal component is so affected for the crossover method. Along-track smoothing is efficient for mitigating measurement errors for crossover estimates, and the filtering properties of the smoothed estimates are simply related to the spectrum of cross-track speeds. Such smoothing is less effective for parallel-track estimates, and the filtering properties are more difficult to characterize because of the sampling geometry and the convergence of the parallel ground tracks at high latitudes. If suitable along-track smoothing is applied in the crossover method, root-mean-squared errors (rmse's) of about 30% or less of the signal standard deviation can be obtained for each orthogonal velocity component over the latitude range 5°?60°. With 2-cm orbit errors, the parallel-track method yields estimates of the meridional velocity component with errors that exceed 40% at all latitudes. If orbit errors can be reduced to 1-cm standard deviation, the parallel-track method yields an rmse smaller than 30% in both orthogonal components for the latitude range 5°?55°.
    publisherAmerican Meteorological Society
    titleThe Accuracies of Crossover and Parallel-Track Estimates of Geostrophic Velocity from TOPEX/Poseidon and Jason Altimeter Data
    typeJournal Paper
    journal volume20
    journal issue8
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2003)020<1196:TAOCAP>2.0.CO;2
    journal fristpage1196
    journal lastpage1211
    treeJournal of Atmospheric and Oceanic Technology:;2003:;volume( 020 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian