YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Orographic Influences on the Distribution and Generation of Atmospheric Variability in a GCM

    Source: Journal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 013::page 2428
    Author:
    Yu, Jin-Yi
    ,
    Hartmann, Dennis L.
    DOI: 10.1175/1520-0469(1995)052<2428:OIOTDA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The effect of large-scale mountains on atmospheric variability is studied in a series of GCM experiments in which a single mountain is varied in height from 0 to 4 km. High-frequency (τ < 7 days) and low-frequency (τ > 30 days) variability are largest in the jet exit region, while the intermediate-frequency (7 < τ < 30 days) variability has its maximum upstream of the mountain where it exhibits enhanced equatorward propagation. High and intermediate frequencies change from zonal wave trains to localized wave packets as orographic forcing is increased, but they retain their characteristic scale and frequency. The dominant pattern of low-frequency is variability changes from a zonally symmetric oscillation, for which transient eddy-zonal flow interaction is the dominant mechanism, to a more localized oscillation of the jet downstream of the mountain. The transient eddy forcing still plays a significant role in maintaining the variations of this more localized jet, however. The total amount of wave energy remains almost constant as the mountain height is increased, but the distribution of wave energy shifts from transient to stationary and from high frequencies to low frequencies. Low-frequency variability shows a step function response to orographic forcing in that it shows no response to a 1-km mountain, increases substantially in response to a 2-km mountain, and then shows little further increase as the mountain is raised to 3 and 4 km. This behavior suggests that the mechanism that generates the additional low-frequency variability in the mountain-forced experiments becomes effective after the zonal asymmetry reaches a critical value and then does not respond much to further increases in asymmetry.
    • Download: (1.354Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Orographic Influences on the Distribution and Generation of Atmospheric Variability in a GCM

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157863
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorYu, Jin-Yi
    contributor authorHartmann, Dennis L.
    date accessioned2017-06-09T14:33:12Z
    date available2017-06-09T14:33:12Z
    date copyright1995/07/01
    date issued1995
    identifier issn0022-4928
    identifier otherams-21515.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157863
    description abstractThe effect of large-scale mountains on atmospheric variability is studied in a series of GCM experiments in which a single mountain is varied in height from 0 to 4 km. High-frequency (τ < 7 days) and low-frequency (τ > 30 days) variability are largest in the jet exit region, while the intermediate-frequency (7 < τ < 30 days) variability has its maximum upstream of the mountain where it exhibits enhanced equatorward propagation. High and intermediate frequencies change from zonal wave trains to localized wave packets as orographic forcing is increased, but they retain their characteristic scale and frequency. The dominant pattern of low-frequency is variability changes from a zonally symmetric oscillation, for which transient eddy-zonal flow interaction is the dominant mechanism, to a more localized oscillation of the jet downstream of the mountain. The transient eddy forcing still plays a significant role in maintaining the variations of this more localized jet, however. The total amount of wave energy remains almost constant as the mountain height is increased, but the distribution of wave energy shifts from transient to stationary and from high frequencies to low frequencies. Low-frequency variability shows a step function response to orographic forcing in that it shows no response to a 1-km mountain, increases substantially in response to a 2-km mountain, and then shows little further increase as the mountain is raised to 3 and 4 km. This behavior suggests that the mechanism that generates the additional low-frequency variability in the mountain-forced experiments becomes effective after the zonal asymmetry reaches a critical value and then does not respond much to further increases in asymmetry.
    publisherAmerican Meteorological Society
    titleOrographic Influences on the Distribution and Generation of Atmospheric Variability in a GCM
    typeJournal Paper
    journal volume52
    journal issue13
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1995)052<2428:OIOTDA>2.0.CO;2
    journal fristpage2428
    journal lastpage2443
    treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian