YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Energy Accumulation and Emanation at Low Latitudes. Part III: Forward and Backward Accumulation

    Source: Journal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 013::page 2384
    Author:
    Chang, Hai-Ru
    ,
    Webster, Peter J.
    DOI: 10.1175/1520-0469(1995)052<2384:EAAEAL>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Short equatorially trapped Rossby waves are usually thought to he trapped and dissipated nea the region of creation because of their relatively slow group speeds and because of the relatively low amplitude basic state within which they reside. Only long Rossby waves, with stronger group speeds, are assumed to move far away from the forcing area producing remote effects or teleconnections. These restrictions on the regions of influence of Rossby waves are only valid in a motionless basic state or in a basic state that is constant with longitude. If the basic state changes in the zonal direction, even short waves have considerable remote effects. Using ray-tracing techniques and nonlinear numerical models, the impact of a zonally varying basic state on the characteristics of equatorial modes is investigated. The original low-latitude energy accumulation zone theory of Webster and Chang is extended to include the complete family of tropical waves. In equatorial regions, the majority of Rossby waves are longitudinally trapped in regions where the stretching deformation of the background flow is negative. Most of the Rossby packet will reach the energy accumulation area from the east. This kind of wave action flux accumulation (i.e., from the east) is referred to as ?forward accumulation.? However, some shortwaves of the packet will propagate into the accumulation region from the west. This reverse propagation into an accumulation zone is referred to as ?backward accumulation.? Mixed Rossby-gravity waves are also considered. Ray tracing technics indicate that the mixed wave is less likely to be longitudinally trapped. However, if the wave is trapped, the energy accumulation area is generally located in the same place as that of Rossby wave and that the energy is accumulated through backward processes. A nonlinear global spectral model is used to cheek the WKB approximations used in the ray tracing. The results of this study suggest that the ubiquity of the longwave approximation for equatorial modes should be questioned. As the basic state modifies the scale of the mode such that initially very long modes may evolve to shorter scales during propagation through the longitudinally varying flow (and vice versa for initially short modes), the approximation appears questionable in any region where the magnitude of the basic state is similar to the group speeds of the mode, the basic state changes sign, and the basic state possesses a significant stretching deformation. With the longwave approximation, not only does the mixed Rossby-gravity wave disappear but the dispersive Rossby modes are rendered effectively nondispersive. Furthermore, the accumulation property of equatorial waves is also eliminated.
    • Download: (1.753Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Energy Accumulation and Emanation at Low Latitudes. Part III: Forward and Backward Accumulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157860
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorChang, Hai-Ru
    contributor authorWebster, Peter J.
    date accessioned2017-06-09T14:33:11Z
    date available2017-06-09T14:33:11Z
    date copyright1995/07/01
    date issued1995
    identifier issn0022-4928
    identifier otherams-21512.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157860
    description abstractShort equatorially trapped Rossby waves are usually thought to he trapped and dissipated nea the region of creation because of their relatively slow group speeds and because of the relatively low amplitude basic state within which they reside. Only long Rossby waves, with stronger group speeds, are assumed to move far away from the forcing area producing remote effects or teleconnections. These restrictions on the regions of influence of Rossby waves are only valid in a motionless basic state or in a basic state that is constant with longitude. If the basic state changes in the zonal direction, even short waves have considerable remote effects. Using ray-tracing techniques and nonlinear numerical models, the impact of a zonally varying basic state on the characteristics of equatorial modes is investigated. The original low-latitude energy accumulation zone theory of Webster and Chang is extended to include the complete family of tropical waves. In equatorial regions, the majority of Rossby waves are longitudinally trapped in regions where the stretching deformation of the background flow is negative. Most of the Rossby packet will reach the energy accumulation area from the east. This kind of wave action flux accumulation (i.e., from the east) is referred to as ?forward accumulation.? However, some shortwaves of the packet will propagate into the accumulation region from the west. This reverse propagation into an accumulation zone is referred to as ?backward accumulation.? Mixed Rossby-gravity waves are also considered. Ray tracing technics indicate that the mixed wave is less likely to be longitudinally trapped. However, if the wave is trapped, the energy accumulation area is generally located in the same place as that of Rossby wave and that the energy is accumulated through backward processes. A nonlinear global spectral model is used to cheek the WKB approximations used in the ray tracing. The results of this study suggest that the ubiquity of the longwave approximation for equatorial modes should be questioned. As the basic state modifies the scale of the mode such that initially very long modes may evolve to shorter scales during propagation through the longitudinally varying flow (and vice versa for initially short modes), the approximation appears questionable in any region where the magnitude of the basic state is similar to the group speeds of the mode, the basic state changes sign, and the basic state possesses a significant stretching deformation. With the longwave approximation, not only does the mixed Rossby-gravity wave disappear but the dispersive Rossby modes are rendered effectively nondispersive. Furthermore, the accumulation property of equatorial waves is also eliminated.
    publisherAmerican Meteorological Society
    titleEnergy Accumulation and Emanation at Low Latitudes. Part III: Forward and Backward Accumulation
    typeJournal Paper
    journal volume52
    journal issue13
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1995)052<2384:EAAEAL>2.0.CO;2
    journal fristpage2384
    journal lastpage2403
    treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian