YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High-Frequency Orographically Forced Variability in a Single-Layer Model of the Martian Atmosphere

    Source: Journal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 011::page 1949
    Author:
    Keppenne, Christian L.
    ,
    Ingersoll, Andrew P.
    DOI: 10.1175/1520-0469(1995)052<1949:HFOFVI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A shallow water model with realistic topography and idealized zonal wind forcing is used to investigate orographically forced modes in the Martian atmosphere. Locally, the model produces barotropic modes with periods within the broad range of periods observed at the sites of Viking Lander I and II (VILI and VL2) during the fall and spring seasons. Its variability at those sites is dominated by an oscillation of 3 Martian solar days (sols) in the region of VL1 and by a 6-sol oscillation in that of VL2. These oscillations are forced by the zonal asymmetries of the Martian mountain field. Their robustness with respect to changes of the fundamental model parameters is examined. Since the exhibited periods occur for a barotropic forcing field that is highly idealized, it is difficult to say whether they have much to do with the real Mars, but their resemblance to some of the periodicities present in the observed Martian climatology deserves further investigation. The spatial variability associated with the orographically forced oscillations is studied by means of extended empirical orthogonal function (EEOF) analysis. The 3-sol VL1 oscillation corresponds to a tropical, eastward traveling, zonal wavenumber one pattern. The 6-sol VL2 oscillation is characterized by two midlatitude, eastward traveling, mixed zonal wavenumber one and two and zonal wavenumber three and four patterns, with respective periods near 6.1 and 5.5 sols. The corresponding phase speeds are in agreement with some of the conclusions drawn from the lander observations. A linear stability analysis of the zonally asymmetric climatology reveals that the two most unstable modes are associated with periods near 3 and 6 sols; with the corresponding eigen-vectors showing patterns consistent with the results of the EEOF analyses.
    • Download: (1.083Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High-Frequency Orographically Forced Variability in a Single-Layer Model of the Martian Atmosphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157828
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKeppenne, Christian L.
    contributor authorIngersoll, Andrew P.
    date accessioned2017-06-09T14:33:06Z
    date available2017-06-09T14:33:06Z
    date copyright1995/06/01
    date issued1995
    identifier issn0022-4928
    identifier otherams-21484.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157828
    description abstractA shallow water model with realistic topography and idealized zonal wind forcing is used to investigate orographically forced modes in the Martian atmosphere. Locally, the model produces barotropic modes with periods within the broad range of periods observed at the sites of Viking Lander I and II (VILI and VL2) during the fall and spring seasons. Its variability at those sites is dominated by an oscillation of 3 Martian solar days (sols) in the region of VL1 and by a 6-sol oscillation in that of VL2. These oscillations are forced by the zonal asymmetries of the Martian mountain field. Their robustness with respect to changes of the fundamental model parameters is examined. Since the exhibited periods occur for a barotropic forcing field that is highly idealized, it is difficult to say whether they have much to do with the real Mars, but their resemblance to some of the periodicities present in the observed Martian climatology deserves further investigation. The spatial variability associated with the orographically forced oscillations is studied by means of extended empirical orthogonal function (EEOF) analysis. The 3-sol VL1 oscillation corresponds to a tropical, eastward traveling, zonal wavenumber one pattern. The 6-sol VL2 oscillation is characterized by two midlatitude, eastward traveling, mixed zonal wavenumber one and two and zonal wavenumber three and four patterns, with respective periods near 6.1 and 5.5 sols. The corresponding phase speeds are in agreement with some of the conclusions drawn from the lander observations. A linear stability analysis of the zonally asymmetric climatology reveals that the two most unstable modes are associated with periods near 3 and 6 sols; with the corresponding eigen-vectors showing patterns consistent with the results of the EEOF analyses.
    publisherAmerican Meteorological Society
    titleHigh-Frequency Orographically Forced Variability in a Single-Layer Model of the Martian Atmosphere
    typeJournal Paper
    journal volume52
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1995)052<1949:HFOFVI>2.0.CO;2
    journal fristpage1949
    journal lastpage1958
    treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian