YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Impact of Orographic Forcing on Barotropic Unstable Singular Vectors

    Source: Journal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 009::page 1457
    Author:
    Buizza, Roberto
    DOI: 10.1175/1520-0469(1995)052<1457:TIOOFO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The influence of topography on fluid instability has been studied in literature both in the beta-channel approximation and on the sphere mainly using normal modes. A different approach recently proposed is based on the identification of unstable singular vectors (i.e., structures that have the fastest growth over finite-time intervals). Systems characterized by neutral or damped normal modes have been shown to have singular vectors growing (e.g., in terms of kinetic energy) over finite-time intervals. Singular vectors do not conserve their shape during time evolution as normal modes do. Various aspects related to the identification of singular vectors of a barotropic flow are analyzed in this paper, with the final goal of studying the impact of the orography on these structures. First, the author focuses on very idealized situations to verify if neutral and damped flows can sustain structures growing over finite-time intervals. Then, the author studies singular vectors of basic states defined as the super-position of a superrotation and a Rossby-Haurwitz wave forced by orographies that project onto one spectral component only or forced by very simple orographies with longitudinally or latitudinally elongated shapes. This first part shows that orography can alter the unstable subspace generated by the most unstable singular vectors, either directly through the action of the orographic term in the linear equation or indirectly by modifying the evolution of the basic state. In the second part, the author considers a realistic basic state, defined as a mean winter flow computed from 3 months of observed vorticity field, forced by a realistic orography. It is shown that the orographic forcing can indirectly modify the singular vector structures. In fact, ?orographically induced? instabilities can be identified only when considering time-evolving basic states. These results show that unstable structures related to physical processes can be captured by the adjoint technique.
    • Download: (1.385Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Impact of Orographic Forcing on Barotropic Unstable Singular Vectors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157791
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBuizza, Roberto
    date accessioned2017-06-09T14:33:00Z
    date available2017-06-09T14:33:00Z
    date copyright1995/05/01
    date issued1995
    identifier issn0022-4928
    identifier otherams-21450.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157791
    description abstractThe influence of topography on fluid instability has been studied in literature both in the beta-channel approximation and on the sphere mainly using normal modes. A different approach recently proposed is based on the identification of unstable singular vectors (i.e., structures that have the fastest growth over finite-time intervals). Systems characterized by neutral or damped normal modes have been shown to have singular vectors growing (e.g., in terms of kinetic energy) over finite-time intervals. Singular vectors do not conserve their shape during time evolution as normal modes do. Various aspects related to the identification of singular vectors of a barotropic flow are analyzed in this paper, with the final goal of studying the impact of the orography on these structures. First, the author focuses on very idealized situations to verify if neutral and damped flows can sustain structures growing over finite-time intervals. Then, the author studies singular vectors of basic states defined as the super-position of a superrotation and a Rossby-Haurwitz wave forced by orographies that project onto one spectral component only or forced by very simple orographies with longitudinally or latitudinally elongated shapes. This first part shows that orography can alter the unstable subspace generated by the most unstable singular vectors, either directly through the action of the orographic term in the linear equation or indirectly by modifying the evolution of the basic state. In the second part, the author considers a realistic basic state, defined as a mean winter flow computed from 3 months of observed vorticity field, forced by a realistic orography. It is shown that the orographic forcing can indirectly modify the singular vector structures. In fact, ?orographically induced? instabilities can be identified only when considering time-evolving basic states. These results show that unstable structures related to physical processes can be captured by the adjoint technique.
    publisherAmerican Meteorological Society
    titleThe Impact of Orographic Forcing on Barotropic Unstable Singular Vectors
    typeJournal Paper
    journal volume52
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1995)052<1457:TIOOFO>2.0.CO;2
    journal fristpage1457
    journal lastpage1472
    treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian