YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Singular-Vector Structure of the Atmospheric Global Circulation

    Source: Journal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 009::page 1434
    Author:
    Buizza, R.
    ,
    Palmer, T. N.
    DOI: 10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The local phase-space instability Of the atmospheric global circulation is Characterized by its (nonmodal) singular vectors. The formalism of singular vector analysis is described. The relations between singular vectors, normal modes, adjoint modes, Lyapunov vectors, perturbations produced by the so-called breeding method, and wave pseudomomentum are outlined. Techniques to estimate the dominant part of the singular spectrum using large-dimensional primitive equation models are discussed. These include the use of forward and adjoint tangent propagators with a Lanczos iterative algorithm. Results are described, based first on statistics of routine calculations made between December 1992 and August 1993, and second on three specific case studies. Results define three dominant geographical areas of instability in the Northern Hemisphere: the two regions of storm track cyclogenesis, and the North African subtropical jet Singular vectors can amplify as much as tenfold over 36 hours, and in winter there are typically at least 35 independent singular vectors, which quadruple in amplitude over this timescale. Qualitatively, the distribution of singular vectors can be associated with a simple diagnostic of baroclinic instability from the basic-state flow. However, this relationship is not quantitatively reliable, as, for example, the chosen diagnostic takes no account of the horizontal or time-varying structure of the basic-state flow. Three basic types of singular vector are identified The most important and most frequent is located in mid latitudes. At initial time, the singular vector is localized in the horizontal, with most amplitude in the lower troposphere. Energy growth can be interpreted qualitatively in terms of wave pseudomomentum propagation into the jet, resulting in peak amplitudes in the upper troposphere at optimization time. During evolution the dominant horizontal wavenumber of the singular vector decreases. Singular vector growth is therefore fundamentally nonmodal. Singular vectors 1ocalized first in the tropical upper troposphere. and second with equivalent barotropic structure in the high-latitude troposhpere, are also identified.
    • Download: (2.084Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Singular-Vector Structure of the Atmospheric Global Circulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157789
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBuizza, R.
    contributor authorPalmer, T. N.
    date accessioned2017-06-09T14:33:00Z
    date available2017-06-09T14:33:00Z
    date copyright1995/05/01
    date issued1995
    identifier issn0022-4928
    identifier otherams-21449.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157789
    description abstractThe local phase-space instability Of the atmospheric global circulation is Characterized by its (nonmodal) singular vectors. The formalism of singular vector analysis is described. The relations between singular vectors, normal modes, adjoint modes, Lyapunov vectors, perturbations produced by the so-called breeding method, and wave pseudomomentum are outlined. Techniques to estimate the dominant part of the singular spectrum using large-dimensional primitive equation models are discussed. These include the use of forward and adjoint tangent propagators with a Lanczos iterative algorithm. Results are described, based first on statistics of routine calculations made between December 1992 and August 1993, and second on three specific case studies. Results define three dominant geographical areas of instability in the Northern Hemisphere: the two regions of storm track cyclogenesis, and the North African subtropical jet Singular vectors can amplify as much as tenfold over 36 hours, and in winter there are typically at least 35 independent singular vectors, which quadruple in amplitude over this timescale. Qualitatively, the distribution of singular vectors can be associated with a simple diagnostic of baroclinic instability from the basic-state flow. However, this relationship is not quantitatively reliable, as, for example, the chosen diagnostic takes no account of the horizontal or time-varying structure of the basic-state flow. Three basic types of singular vector are identified The most important and most frequent is located in mid latitudes. At initial time, the singular vector is localized in the horizontal, with most amplitude in the lower troposphere. Energy growth can be interpreted qualitatively in terms of wave pseudomomentum propagation into the jet, resulting in peak amplitudes in the upper troposphere at optimization time. During evolution the dominant horizontal wavenumber of the singular vector decreases. Singular vector growth is therefore fundamentally nonmodal. Singular vectors 1ocalized first in the tropical upper troposphere. and second with equivalent barotropic structure in the high-latitude troposhpere, are also identified.
    publisherAmerican Meteorological Society
    titleThe Singular-Vector Structure of the Atmospheric Global Circulation
    typeJournal Paper
    journal volume52
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2
    journal fristpage1434
    journal lastpage1456
    treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian