YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interactions of Radiation and Convection in Simulated Tropical Cloud Clusters

    Source: Journal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 009::page 1310
    Author:
    Fu, Qiang
    ,
    Krueger, Steven K.
    ,
    Liou, K. N.
    DOI: 10.1175/1520-0469(1995)052<1310:IORACI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A two-dimensional cumulus ensemble model is used to study the interactions of radiation and convection in tropical squall cloud clusters. The model includes cloud-scale and mesoscale dynamics, an improved bulk ice microphysics parameterization, and an advanced interactive radiative transfer scheme. The life cycle of a tropical squall line is simulated over a 12-h period using thermodynamic and kinematic initial conditions as well as large-scale advective forcing typical of a GATE Phase III squall cluster environment. The focus is on the interaction and feedback between longwave (or IR) radiation and cloud processes. It will be shown that clew-sky IR cooling enhances convection and, hence, surface precipitation. Simulation results reveal an increase of surface precipitation by ?15% (?1.7 mm) over a 12-b period due to this clear-sky cooling. With fully interactive IR radiative heating, direct destabilization of clouds via IR radiative top cooling and base warming generates more turbulence and contributes to the longevity and extent of the upper-tropospheric stratiform (anvil) clouds associated with deep convection. The greater extent of anvil clouds decreases the outgoing IR flux at the top of the atmosphere by as much as 20 W m?2. With fully interactive IR radiative heating, the anvil cirrus reduces the IR cooling of the troposphere with respect to the clear-sky values. This cloud IR radiative forcing has a negative feedback on tropical deep convection, which will be referred to as ?anvil cloud IR radiative feedback.? This feedback decreases surface precipitation by ?10% (?1.3 mm). It will also be shown that IR radiative processes modify the hydrometer profiles by affecting convection. On changing the cloud particle size distributions prescribed in radiation calculations, it is further demonstrated that the size distributions significantly influence the convective activity through their effects on the cloud IR radiative forcing. The impact of clear-air IR cooling and cloud radiative forcing on deep convection is further examined by using the cloud-work function, which is a generalized number of the moist convective instability in die large-scale environment. The clear-air IR cooling tends to increase the cloud-work function, but the cloud IR radiative forcing tends to reduce it, especially for the deposit clouds.
    • Download: (1.592Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interactions of Radiation and Convection in Simulated Tropical Cloud Clusters

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157780
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFu, Qiang
    contributor authorKrueger, Steven K.
    contributor authorLiou, K. N.
    date accessioned2017-06-09T14:32:58Z
    date available2017-06-09T14:32:58Z
    date copyright1995/05/01
    date issued1995
    identifier issn0022-4928
    identifier otherams-21440.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157780
    description abstractA two-dimensional cumulus ensemble model is used to study the interactions of radiation and convection in tropical squall cloud clusters. The model includes cloud-scale and mesoscale dynamics, an improved bulk ice microphysics parameterization, and an advanced interactive radiative transfer scheme. The life cycle of a tropical squall line is simulated over a 12-h period using thermodynamic and kinematic initial conditions as well as large-scale advective forcing typical of a GATE Phase III squall cluster environment. The focus is on the interaction and feedback between longwave (or IR) radiation and cloud processes. It will be shown that clew-sky IR cooling enhances convection and, hence, surface precipitation. Simulation results reveal an increase of surface precipitation by ?15% (?1.7 mm) over a 12-b period due to this clear-sky cooling. With fully interactive IR radiative heating, direct destabilization of clouds via IR radiative top cooling and base warming generates more turbulence and contributes to the longevity and extent of the upper-tropospheric stratiform (anvil) clouds associated with deep convection. The greater extent of anvil clouds decreases the outgoing IR flux at the top of the atmosphere by as much as 20 W m?2. With fully interactive IR radiative heating, the anvil cirrus reduces the IR cooling of the troposphere with respect to the clear-sky values. This cloud IR radiative forcing has a negative feedback on tropical deep convection, which will be referred to as ?anvil cloud IR radiative feedback.? This feedback decreases surface precipitation by ?10% (?1.3 mm). It will also be shown that IR radiative processes modify the hydrometer profiles by affecting convection. On changing the cloud particle size distributions prescribed in radiation calculations, it is further demonstrated that the size distributions significantly influence the convective activity through their effects on the cloud IR radiative forcing. The impact of clear-air IR cooling and cloud radiative forcing on deep convection is further examined by using the cloud-work function, which is a generalized number of the moist convective instability in die large-scale environment. The clear-air IR cooling tends to increase the cloud-work function, but the cloud IR radiative forcing tends to reduce it, especially for the deposit clouds.
    publisherAmerican Meteorological Society
    titleInteractions of Radiation and Convection in Simulated Tropical Cloud Clusters
    typeJournal Paper
    journal volume52
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1995)052<1310:IORACI>2.0.CO;2
    journal fristpage1310
    journal lastpage1328
    treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian