YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Model for Particle Microphysics, Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements

    Source: Journal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 008::page 1204
    Author:
    Ackerman, Andrew S.
    ,
    Hobbs, Peter V.
    ,
    Toon, Owen B.
    DOI: 10.1175/1520-0469(1995)052<1204:AMFPMT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an ?500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gale conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets <30-µm radius, and the value of the accommodation coefficient for condensational droplet growth, have noticeable effects on cloud properties. The divergence of the horizontal wind also has a significant effect on a 12-h model simulation of cloud structure. Conclusions drawn from the model are tentative because of the limitations of the 1D model framework. A principal simplification is that the model assumes horizontal homogeneity, and, therefore, does not resolve updrafts and downdrafts. Likely consequences of this simplification include overprediction of the growth of droplets by condensation in the upper region of the cloud, underprediction of droplet condensational growth in the lower region of the cloud, and underprediction of peak supersaturations.
    • Download: (2.526Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Model for Particle Microphysics, Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157772
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorAckerman, Andrew S.
    contributor authorHobbs, Peter V.
    contributor authorToon, Owen B.
    date accessioned2017-06-09T14:32:57Z
    date available2017-06-09T14:32:57Z
    date copyright1995/04/01
    date issued1995
    identifier issn0022-4928
    identifier otherams-21433.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157772
    description abstractA detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an ?500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gale conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets <30-µm radius, and the value of the accommodation coefficient for condensational droplet growth, have noticeable effects on cloud properties. The divergence of the horizontal wind also has a significant effect on a 12-h model simulation of cloud structure. Conclusions drawn from the model are tentative because of the limitations of the 1D model framework. A principal simplification is that the model assumes horizontal homogeneity, and, therefore, does not resolve updrafts and downdrafts. Likely consequences of this simplification include overprediction of the growth of droplets by condensation in the upper region of the cloud, underprediction of droplet condensational growth in the lower region of the cloud, and underprediction of peak supersaturations.
    publisherAmerican Meteorological Society
    titleA Model for Particle Microphysics, Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements
    typeJournal Paper
    journal volume52
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1995)052<1204:AMFPMT>2.0.CO;2
    journal fristpage1204
    journal lastpage1236
    treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian