YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation

    Source: Journal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 007::page 838
    Author:
    Fabry, Frederic
    ,
    Zawadzki, Isztar
    DOI: 10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this study, 600 h of vertically pointing X-band radar data and 50 h of UHF boundary layer wind profiler data were processed and analyzed to characterize quantitatively the structure and the causes of the radar signature from melting precipitation. Five classes of vertical profiles of reflectivity in rain were identified, with three of them having precipitation undergoing a transition between the solid and liquid phase. Only one of them, albeit the most common, showed a radar brightband signature. In-depth study of the bright band and its dependence on precipitation intensity reveals that the ratio of the brightband peak reflectivity to the rainfall reflectivity is constant at 8 dB below 0.5 mm h?1 and then increases to reach 13 dB at 2.5 mm h?1 and 16 dB at 5 mm h?1. The equivalent reflectivity factor of snow just above the melting layer is on average 1?2 dB below the reflectivity of rain just below the melting layer, independent of precipitation intensity. The classical brightband explanation accounts for less than half of the observed reflectivity enhancement; the difference could be explained by effects associated with the shape and density of melting snowflakes and, to a smaller extent, by precipitation growth in the melting layer and aggregation in the early stages of the melting followed by breakup in the final stages. The brightband statistics were also significantly different for reflectivities in rain above 2.5 dBZ when observations were made with an X-band radar as opposed to the wind profiler because of the combination of attenuation in the melting layer and the fact that scattering from some of the large hydrometers above and within the melting layer depart from the Rayleigh approximation usually used to compute reflectivity. The bright band is often capped by a thin and faint dark layer, which tends to be more evident at weak precipitation intensifies.
    • Download: (1.433Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157745
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFabry, Frederic
    contributor authorZawadzki, Isztar
    date accessioned2017-06-09T14:32:53Z
    date available2017-06-09T14:32:53Z
    date copyright1995/04/01
    date issued1995
    identifier issn0022-4928
    identifier otherams-21409.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157745
    description abstractIn this study, 600 h of vertically pointing X-band radar data and 50 h of UHF boundary layer wind profiler data were processed and analyzed to characterize quantitatively the structure and the causes of the radar signature from melting precipitation. Five classes of vertical profiles of reflectivity in rain were identified, with three of them having precipitation undergoing a transition between the solid and liquid phase. Only one of them, albeit the most common, showed a radar brightband signature. In-depth study of the bright band and its dependence on precipitation intensity reveals that the ratio of the brightband peak reflectivity to the rainfall reflectivity is constant at 8 dB below 0.5 mm h?1 and then increases to reach 13 dB at 2.5 mm h?1 and 16 dB at 5 mm h?1. The equivalent reflectivity factor of snow just above the melting layer is on average 1?2 dB below the reflectivity of rain just below the melting layer, independent of precipitation intensity. The classical brightband explanation accounts for less than half of the observed reflectivity enhancement; the difference could be explained by effects associated with the shape and density of melting snowflakes and, to a smaller extent, by precipitation growth in the melting layer and aggregation in the early stages of the melting followed by breakup in the final stages. The brightband statistics were also significantly different for reflectivities in rain above 2.5 dBZ when observations were made with an X-band radar as opposed to the wind profiler because of the combination of attenuation in the melting layer and the fact that scattering from some of the large hydrometers above and within the melting layer depart from the Rayleigh approximation usually used to compute reflectivity. The bright band is often capped by a thin and faint dark layer, which tends to be more evident at weak precipitation intensifies.
    publisherAmerican Meteorological Society
    titleLong-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation
    typeJournal Paper
    journal volume52
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2
    journal fristpage838
    journal lastpage851
    treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian