YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Baroclinic Dynamics of Simulated Tropical Cyclone Recurvature

    Source: Journal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 004::page 410
    Author:
    Holland, Greg J.
    ,
    Wang, Yuqing
    DOI: 10.1175/1520-0469(1995)052<0410:BDOSTC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The mechanisms associated with tropical cyclone recurvature are investigated using a five-level primitive equation model and an idealized environment with characteristics observed in cyclone recurvature conditions. All cyclones moved generally with the flow in the lower and middle troposphere, but the precise motion occurs by a combination of divergence and of advection in both the horizontal and the vertical. The horizontal advection arises from a combination of the initial environmental flow and local changes from rearrangement of the potential vorticity field by cyclone-environment interaction (the so-called,? effect). The balance between these mechanisms changes as the vortex recurves. Since the gradients of potential vorticity increase sharply poleward of the subtropical ridge, this is the preferred region for development of an anticyclonic gyre. This gyre is advected eastward and becomes the dominant anticyclonic system. Recurvature is aided by horizontal deformation of the cyclone in the vicinity of this gyre, and by the manner in which the vertical tilt of the vortex and local divergence fields vary as it moves through a changing vertical wind shear of the environment. Recurvature is sensitive to the degree of diabatic heating and to small meridional changes in the initial vortex location. It is shown that recurvature can occur through an initially unbroken subtropical ridge, but that the presence of a midlatitude trough substantially enhances the potential for recurvature. However, while changes in the upper troposphere are indicative of recurvature potential, recurvature is accomplished largely by lower-tropospheric changes. An important component of this change is the development of a major anticyclone poleward and eastward of the cyclone. A recent observational study by Ford et al. concurs with this finding.
    • Download: (1.306Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Baroclinic Dynamics of Simulated Tropical Cyclone Recurvature

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157710
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHolland, Greg J.
    contributor authorWang, Yuqing
    date accessioned2017-06-09T14:32:48Z
    date available2017-06-09T14:32:48Z
    date copyright1995/02/01
    date issued1995
    identifier issn0022-4928
    identifier otherams-21378.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157710
    description abstractThe mechanisms associated with tropical cyclone recurvature are investigated using a five-level primitive equation model and an idealized environment with characteristics observed in cyclone recurvature conditions. All cyclones moved generally with the flow in the lower and middle troposphere, but the precise motion occurs by a combination of divergence and of advection in both the horizontal and the vertical. The horizontal advection arises from a combination of the initial environmental flow and local changes from rearrangement of the potential vorticity field by cyclone-environment interaction (the so-called,? effect). The balance between these mechanisms changes as the vortex recurves. Since the gradients of potential vorticity increase sharply poleward of the subtropical ridge, this is the preferred region for development of an anticyclonic gyre. This gyre is advected eastward and becomes the dominant anticyclonic system. Recurvature is aided by horizontal deformation of the cyclone in the vicinity of this gyre, and by the manner in which the vertical tilt of the vortex and local divergence fields vary as it moves through a changing vertical wind shear of the environment. Recurvature is sensitive to the degree of diabatic heating and to small meridional changes in the initial vortex location. It is shown that recurvature can occur through an initially unbroken subtropical ridge, but that the presence of a midlatitude trough substantially enhances the potential for recurvature. However, while changes in the upper troposphere are indicative of recurvature potential, recurvature is accomplished largely by lower-tropospheric changes. An important component of this change is the development of a major anticyclone poleward and eastward of the cyclone. A recent observational study by Ford et al. concurs with this finding.
    publisherAmerican Meteorological Society
    titleBaroclinic Dynamics of Simulated Tropical Cyclone Recurvature
    typeJournal Paper
    journal volume52
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1995)052<0410:BDOSTC>2.0.CO;2
    journal fristpage410
    journal lastpage426
    treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian