YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interannual Variability in the Northern Hemisphere Winter Middle Atmosphere in Control and Perturbed Experiments with the GFDL SKYHI General Circulation Model

    Source: Journal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 001::page 44
    Author:
    Hamilton, Kevin
    DOI: 10.1175/1520-0469(1995)052<0044:IVITNH>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This paper reports on interannual variability of the Northern Hemisphere winter stratospheric circulation as simulated by the 40-level GFDL ?SKYHI? general circulation model. A 31-year control simulation was performed using a climatological annual cycle of sea surface temperatures. The interannual variability of the stratospheric circulation in this model has some realistic features. In particular, the simulated variance of monthly mean, zonal-man temperature and wind in the. extratropical Northern Hemisphere agrees fairly well with observations. The day-to-day variability of the circulation also appears to be rather well simulated, with midwinter warmings of realistic intensity and suddenness appearing in the polar regions. The major deficiency is the absence of a realistic quasi-biennial oscillation (QBO) in the simulated winds in the tropical lower stratosphere. There is also an indication of long period (?10 year) variability in the winter polar vortex. This appears not to be related to any obvious source of long-term memory in the atmosphere such as surface boundary conditions or the flow in the tropical stratosphere. The model has also been run through a large number of boreal winter simulations with imposed perturbations. In one set of experiments the Pacific sea surface temperatures have been changed to these appropriate for strong El Niño or La Niña conditions. The model is found to reproduce the observed extratropical stratospheric response to El Niño conditions quite well. Interestingly, the results suggest that including the interannual variations in SST would not greatly enhance the simulated interannual variance of the extratropical stratosphere circulation. Another set of integrations involved arbitrarily altering the mean flow in the tropical lower stratosphere to be appropriate for different extremes of the QBO. The effect of these modifications on the simulated zonal-mean circulation in the extratropical winter stratosphere is found to be quite modest relative to that seen in comparable observations. The model results do display a clear effect of the imposed tropical lower-stratospheric wind perturbations on the extratropical summer mesospheric circulation. This could reflect the influence of the mean flow variations on the gravity waves forced in the Tropics, propagating upward and poleward and ultimately breaking in the extratropical mesosphere. The model behavior in this regard may be related to reported observations of an extratropical mesospheric QBO. The equilibration of the stratospheric water vapor field in the long SKYHI control integration is examined. The results suggest that the mean residence time for upper-stratospheric air in the model is about 4 years.
    • Download: (1.899Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interannual Variability in the Northern Hemisphere Winter Middle Atmosphere in Control and Perturbed Experiments with the GFDL SKYHI General Circulation Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157683
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHamilton, Kevin
    date accessioned2017-06-09T14:32:44Z
    date available2017-06-09T14:32:44Z
    date copyright1995/01/01
    date issued1995
    identifier issn0022-4928
    identifier otherams-21353.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157683
    description abstractThis paper reports on interannual variability of the Northern Hemisphere winter stratospheric circulation as simulated by the 40-level GFDL ?SKYHI? general circulation model. A 31-year control simulation was performed using a climatological annual cycle of sea surface temperatures. The interannual variability of the stratospheric circulation in this model has some realistic features. In particular, the simulated variance of monthly mean, zonal-man temperature and wind in the. extratropical Northern Hemisphere agrees fairly well with observations. The day-to-day variability of the circulation also appears to be rather well simulated, with midwinter warmings of realistic intensity and suddenness appearing in the polar regions. The major deficiency is the absence of a realistic quasi-biennial oscillation (QBO) in the simulated winds in the tropical lower stratosphere. There is also an indication of long period (?10 year) variability in the winter polar vortex. This appears not to be related to any obvious source of long-term memory in the atmosphere such as surface boundary conditions or the flow in the tropical stratosphere. The model has also been run through a large number of boreal winter simulations with imposed perturbations. In one set of experiments the Pacific sea surface temperatures have been changed to these appropriate for strong El Niño or La Niña conditions. The model is found to reproduce the observed extratropical stratospheric response to El Niño conditions quite well. Interestingly, the results suggest that including the interannual variations in SST would not greatly enhance the simulated interannual variance of the extratropical stratosphere circulation. Another set of integrations involved arbitrarily altering the mean flow in the tropical lower stratosphere to be appropriate for different extremes of the QBO. The effect of these modifications on the simulated zonal-mean circulation in the extratropical winter stratosphere is found to be quite modest relative to that seen in comparable observations. The model results do display a clear effect of the imposed tropical lower-stratospheric wind perturbations on the extratropical summer mesospheric circulation. This could reflect the influence of the mean flow variations on the gravity waves forced in the Tropics, propagating upward and poleward and ultimately breaking in the extratropical mesosphere. The model behavior in this regard may be related to reported observations of an extratropical mesospheric QBO. The equilibration of the stratospheric water vapor field in the long SKYHI control integration is examined. The results suggest that the mean residence time for upper-stratospheric air in the model is about 4 years.
    publisherAmerican Meteorological Society
    titleInterannual Variability in the Northern Hemisphere Winter Middle Atmosphere in Control and Perturbed Experiments with the GFDL SKYHI General Circulation Model
    typeJournal Paper
    journal volume52
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1995)052<0044:IVITNH>2.0.CO;2
    journal fristpage44
    journal lastpage66
    treeJournal of the Atmospheric Sciences:;1995:;Volume( 052 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian