YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Statistical Analysis of the Dependency of Closure Assumptions in Cumulus Parameterization on the Horizontal Resolution

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 024::page 3674
    Author:
    Xu, Kuan-Man
    DOI: 10.1175/1520-0469(1994)051<3674:ASAOTD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Simulated data from the UCLA cumulus ensemble model are used to investigate the quasi-universal validity of closure assumptions used in existing cumulus parameterizations. A closure assumption is quasi-universally valid if it is sensitive neither to convective cloud regimes nor to horizontal resolutions of large-scale/mesoscale models. The dependency of three types of closure assumptions, as classified by Arakawa and Chen, on the horizontal resolution is addressed in this study. Type I is the constraint on the coupling of the time tendencies of large-scale temperature and water vapor mixing ratio. Type II is the constraint on the coupling of cumulus heating and cumulus drying. Type III is a direct constraint on the intensity of a cumulus ensemble. The macroscopic behavior of simulated cumulus convection is first compared with the observed behavior in view of Type I and Type II closure assumptions using ?quick-look? and canonical correlation analyses. It is found that they are statistically similar to each other. The three types of closure assumptions are further examined with simulated data averaged over selected subdomain sizes ranging from 64 to 512 km. It is found that the dependency of Type I and Type II closure assumptions on the horizontal resolution is very weak and that Type III closure assumption is somewhat dependent upon the horizontal resolution. The influences of convective and mesoscale processes on the closure assumptions are also addressed by comparing the structures of canonical components with the corresponding vertical profiles in the convective and stratiform regions of cumulus ensembles analyzed directly from simulated data. The implication of these results for cumulus parameterization is discussed.
    • Download: (1.271Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Statistical Analysis of the Dependency of Closure Assumptions in Cumulus Parameterization on the Horizontal Resolution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157667
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorXu, Kuan-Man
    date accessioned2017-06-09T14:32:40Z
    date available2017-06-09T14:32:40Z
    date copyright1994/12/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21339.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157667
    description abstractSimulated data from the UCLA cumulus ensemble model are used to investigate the quasi-universal validity of closure assumptions used in existing cumulus parameterizations. A closure assumption is quasi-universally valid if it is sensitive neither to convective cloud regimes nor to horizontal resolutions of large-scale/mesoscale models. The dependency of three types of closure assumptions, as classified by Arakawa and Chen, on the horizontal resolution is addressed in this study. Type I is the constraint on the coupling of the time tendencies of large-scale temperature and water vapor mixing ratio. Type II is the constraint on the coupling of cumulus heating and cumulus drying. Type III is a direct constraint on the intensity of a cumulus ensemble. The macroscopic behavior of simulated cumulus convection is first compared with the observed behavior in view of Type I and Type II closure assumptions using ?quick-look? and canonical correlation analyses. It is found that they are statistically similar to each other. The three types of closure assumptions are further examined with simulated data averaged over selected subdomain sizes ranging from 64 to 512 km. It is found that the dependency of Type I and Type II closure assumptions on the horizontal resolution is very weak and that Type III closure assumption is somewhat dependent upon the horizontal resolution. The influences of convective and mesoscale processes on the closure assumptions are also addressed by comparing the structures of canonical components with the corresponding vertical profiles in the convective and stratiform regions of cumulus ensembles analyzed directly from simulated data. The implication of these results for cumulus parameterization is discussed.
    publisherAmerican Meteorological Society
    titleA Statistical Analysis of the Dependency of Closure Assumptions in Cumulus Parameterization on the Horizontal Resolution
    typeJournal Paper
    journal volume51
    journal issue24
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<3674:ASAOTD>2.0.CO;2
    journal fristpage3674
    journal lastpage3691
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 024
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian