YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Coupled Ocean–Atmosphere Instability of Relevance to the Seasonal Cycle

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 024::page 3627
    Author:
    Chang, Ping
    ,
    Philander, S. George
    DOI: 10.1175/1520-0469(1994)051<3627:ACOIOR>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Recent observational studies have suggested that interactions between the atmosphere and the ocean play an important role in the pronounced annual cycle of the eastern equatorial Pacific and Atlantic Oceans. The key to this atmosphere?ocean interaction is a positive feedback between the surface winds and the local SST gradients in the cold tongue/ITCZ complex regions, which leads to an instability in the coupled system. By means of linear instability analyses and numerical model experiments, such an instability mechanism is explored in a simple coupled ocean-atmosphere system. The instability analysis yields a family of antisymmetric and symmetric unstable SST modes. The antisymmetric mode has the most rapid growth rate. The most unstable antisymmetric mode occurs at zero wavenumber and has zero frequency. The symmetric SST mode, although its growth rate is smaller, has a structure at annual period that appears to resemble the observed westward propagating feature in the annual cycle of near-equatorial zonal wind and SST. Unlike the ENSO type of coupled unstable modes, the modes of relevance to the seasonal cycle do not involve changes in the thermocline depth. The growth rates of these modes are linearly proportional to the mean vertical temperature gradient and inversely proportional to the depth of mean thermocline in the ocean. Because of the shallow thermocline and strong subsurface thermal gradients in the eastern Pacific and Atlantic Oceans, these coupled unstable modes strongly influence the seasonal cycles of those regions. On the basis of theoretical analyses and the observational evidence, it is suggested that the antisymmetric SST mode may be instrumental in rapidly reestablishing the cold tongues in the eastern Pacific and Atlantic Oceans during the Northern Hemisphere summer, whereas the symmetric SST mode contributes to the westward propagating feature in the annual cycle of near-equatorial zonal winds and SST.
    • Download: (1.555Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Coupled Ocean–Atmosphere Instability of Relevance to the Seasonal Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157665
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorChang, Ping
    contributor authorPhilander, S. George
    date accessioned2017-06-09T14:32:40Z
    date available2017-06-09T14:32:40Z
    date copyright1994/12/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21337.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157665
    description abstractRecent observational studies have suggested that interactions between the atmosphere and the ocean play an important role in the pronounced annual cycle of the eastern equatorial Pacific and Atlantic Oceans. The key to this atmosphere?ocean interaction is a positive feedback between the surface winds and the local SST gradients in the cold tongue/ITCZ complex regions, which leads to an instability in the coupled system. By means of linear instability analyses and numerical model experiments, such an instability mechanism is explored in a simple coupled ocean-atmosphere system. The instability analysis yields a family of antisymmetric and symmetric unstable SST modes. The antisymmetric mode has the most rapid growth rate. The most unstable antisymmetric mode occurs at zero wavenumber and has zero frequency. The symmetric SST mode, although its growth rate is smaller, has a structure at annual period that appears to resemble the observed westward propagating feature in the annual cycle of near-equatorial zonal wind and SST. Unlike the ENSO type of coupled unstable modes, the modes of relevance to the seasonal cycle do not involve changes in the thermocline depth. The growth rates of these modes are linearly proportional to the mean vertical temperature gradient and inversely proportional to the depth of mean thermocline in the ocean. Because of the shallow thermocline and strong subsurface thermal gradients in the eastern Pacific and Atlantic Oceans, these coupled unstable modes strongly influence the seasonal cycles of those regions. On the basis of theoretical analyses and the observational evidence, it is suggested that the antisymmetric SST mode may be instrumental in rapidly reestablishing the cold tongues in the eastern Pacific and Atlantic Oceans during the Northern Hemisphere summer, whereas the symmetric SST mode contributes to the westward propagating feature in the annual cycle of near-equatorial zonal winds and SST.
    publisherAmerican Meteorological Society
    titleA Coupled Ocean–Atmosphere Instability of Relevance to the Seasonal Cycle
    typeJournal Paper
    journal volume51
    journal issue24
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<3627:ACOIOR>2.0.CO;2
    journal fristpage3627
    journal lastpage3648
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 024
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian