YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mixing Processes within the Polar Night Jet

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 020::page 2957
    Author:
    Pierce, R. Bradley
    ,
    Fairlie, T. Duncan
    ,
    Grose, William L.
    ,
    Swinbank, Richard
    ,
    O'Neill, Alan
    DOI: 10.1175/1520-0469(1994)051<2957:MPWTPN>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Lagrangian material line simulations are performed using U.K. Meteorological Office assimilated winds and temperatures to examine mixing processes in the middle- and lower-stratospheric polar night jet during the 1992 Southern Hemisphere spring and Northern Hemisphere winter. The Lagrangian simulations are undertaken to provide insight into the effects of mixing within the polar night jet on observations of the polar vortex made by instruments onboard the Upper Atmosphere Research Satellite during these periods. A moderate to strong kinematic barrier to large-scale isentropic exchange, similar to the barrier identified in GCM simulations, is identified during both of these periods. Characteristic timescales for mixing by large-scale isentropic motions within the polar night jet range from 20 days in the Southern Hemisphere lower stratosphere to years in the Northern Hemisphere middle stratosphere. The long mixing timescales found in the Northern Hemisphere polar night jet do not persist. Instead, the Northern Hemisphere kinematic barriers are broken down as part of the large-scale stratospheric response to a strong tropospheric blocking event. A series of Lagrangian experiments are conducted to investigate the sensitivity of the kinematic barrier to diabatic effects and to small-scale inertial gravity wave motions. Differential diabatic descent is found to have a significant impact on mixing processes within the Southern Hemisphere middle-stratospheric jet core. The interaction between small-scale displacements by idealized, inertial gravity waves and the large-scale flow is found to have a significant impact on mixing within the polar night jet in both hemispheres. These sensitivity experiments suggest that scales of motion that are unresolved in global assimilated datasets may contribute to mass exchange across the kinematic barrier to large-scale isentropic motion.
    • Download: (1.586Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mixing Processes within the Polar Night Jet

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157610
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorPierce, R. Bradley
    contributor authorFairlie, T. Duncan
    contributor authorGrose, William L.
    contributor authorSwinbank, Richard
    contributor authorO'Neill, Alan
    date accessioned2017-06-09T14:32:32Z
    date available2017-06-09T14:32:32Z
    date copyright1994/10/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21288.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157610
    description abstractLagrangian material line simulations are performed using U.K. Meteorological Office assimilated winds and temperatures to examine mixing processes in the middle- and lower-stratospheric polar night jet during the 1992 Southern Hemisphere spring and Northern Hemisphere winter. The Lagrangian simulations are undertaken to provide insight into the effects of mixing within the polar night jet on observations of the polar vortex made by instruments onboard the Upper Atmosphere Research Satellite during these periods. A moderate to strong kinematic barrier to large-scale isentropic exchange, similar to the barrier identified in GCM simulations, is identified during both of these periods. Characteristic timescales for mixing by large-scale isentropic motions within the polar night jet range from 20 days in the Southern Hemisphere lower stratosphere to years in the Northern Hemisphere middle stratosphere. The long mixing timescales found in the Northern Hemisphere polar night jet do not persist. Instead, the Northern Hemisphere kinematic barriers are broken down as part of the large-scale stratospheric response to a strong tropospheric blocking event. A series of Lagrangian experiments are conducted to investigate the sensitivity of the kinematic barrier to diabatic effects and to small-scale inertial gravity wave motions. Differential diabatic descent is found to have a significant impact on mixing processes within the Southern Hemisphere middle-stratospheric jet core. The interaction between small-scale displacements by idealized, inertial gravity waves and the large-scale flow is found to have a significant impact on mixing within the polar night jet in both hemispheres. These sensitivity experiments suggest that scales of motion that are unresolved in global assimilated datasets may contribute to mass exchange across the kinematic barrier to large-scale isentropic motion.
    publisherAmerican Meteorological Society
    titleMixing Processes within the Polar Night Jet
    typeJournal Paper
    journal volume51
    journal issue20
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<2957:MPWTPN>2.0.CO;2
    journal fristpage2957
    journal lastpage2972
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian