YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Freezing Rate Due to Heterogeneous Nucleation

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 013::page 1843
    Author:
    Vali, Gabor
    DOI: 10.1175/1520-0469(1994)051<1843:FRDTHN>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The heterogeneous nucleation of ice from supercooled water is influenced by the nature of the foreign nuclei that serve as the sites for ice embryo formation, and by the stochastic nature of the process of embryo growth to critical size. The relative roles of these two factors have been the subject of some debate, especially as they influence the way nucleation of ice is modeled in clouds. ?Freezing rate? is defined as the time-dependent rate at which a population of macroscopically identical samples (e.g., drops in a volume of air) freeze due to the nuclei contained in them. Freezing rate is the combined result of nucleus content and of time dependence. The time-dependent freezing rate model (TDFR) is consistent with available empirical evidence. For droplets cooled at rates of the order of ?1°C per min, the nucleus content, or nucleus spectrum, predicts the freezing rate with reasonable accuracy. For samples exposed to a fixed temperature, the time dependence of the freezing rate becomes important, but the probability of freezing is not the same for each individual of the sample population. Stochastic models are not supported by the results. Application of the TDFR model and use of measured freezing nucleus data for precipitation provide a basis for the description of ice formation via immersion-freezing nucleation in cloud models. Limitations to full development of these models arise from inadequate knowledge about the freezing nucleus content of cloud water as a function of cloud evolution.
    • Download: (1.065Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Freezing Rate Due to Heterogeneous Nucleation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157532
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorVali, Gabor
    date accessioned2017-06-09T14:32:20Z
    date available2017-06-09T14:32:20Z
    date copyright1994/07/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21217.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157532
    description abstractThe heterogeneous nucleation of ice from supercooled water is influenced by the nature of the foreign nuclei that serve as the sites for ice embryo formation, and by the stochastic nature of the process of embryo growth to critical size. The relative roles of these two factors have been the subject of some debate, especially as they influence the way nucleation of ice is modeled in clouds. ?Freezing rate? is defined as the time-dependent rate at which a population of macroscopically identical samples (e.g., drops in a volume of air) freeze due to the nuclei contained in them. Freezing rate is the combined result of nucleus content and of time dependence. The time-dependent freezing rate model (TDFR) is consistent with available empirical evidence. For droplets cooled at rates of the order of ?1°C per min, the nucleus content, or nucleus spectrum, predicts the freezing rate with reasonable accuracy. For samples exposed to a fixed temperature, the time dependence of the freezing rate becomes important, but the probability of freezing is not the same for each individual of the sample population. Stochastic models are not supported by the results. Application of the TDFR model and use of measured freezing nucleus data for precipitation provide a basis for the description of ice formation via immersion-freezing nucleation in cloud models. Limitations to full development of these models arise from inadequate knowledge about the freezing nucleus content of cloud water as a function of cloud evolution.
    publisherAmerican Meteorological Society
    titleFreezing Rate Due to Heterogeneous Nucleation
    typeJournal Paper
    journal volume51
    journal issue13
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<1843:FRDTHN>2.0.CO;2
    journal fristpage1843
    journal lastpage1856
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian