YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat and Moisture Budgets and Circulation Characteristics of a Frontal Squall Line

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 012::page 1661
    Author:
    Lin, Xin
    ,
    Johnson, Richard H.
    DOI: 10.1175/1520-0469(1994)051<1661:HAMBAC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Heat and moisture budgets and mesoscale circulation features for the developing, mature, and dissipating stages of an intense frontal squall line that occurred in the central United States are investigated. The slow propagating behavior of the squall line made the dataset unique since observations covered a large fraction of the squall line life cycle. Budgets have been performed at six different times at intervals of 90 minutes using 1985 OK PRE-STORM rawinsonde data. The squall line was followed by a low-level cold front. The flow pattern normal to the squall line was generally similar to previous squall line studies except that a low-level rear inflow associated with the cold front was superimposed upon expected squall line FTR/RTF (front to rear/rear to front) flows. The midlevel RTF flow was quite weak well behind the squall line during the developing and mature stages and significantly strengthened during the dissipating stage as the stratiform region developed, suggesting that internal processes within the expanding stratiform region played an important role in RTF flow development. A convergence band resulting from system RTF and FTR flows extended upward and rearward from low levels near the leading edge of the system. During the developing and mature stages, peak convergence was located at low levels around the leading edge. At the dissipating stage, midlevel convergence behind the convective region intensified as the stratiform region developed, while low-level convergence near the leading edge gradually weakened. Both the apparent heat source Q1, and apparent moisture sink Q2 showed an increasing upshear tilt when the stratiform region developed, as did the vertical velocity field. The system-averaged heating peak Q1 was located at middle levels between 500 and 550 hPa throughout the evolution. The moisture sink Q2 exhibited a single drying peak, which resulted from the convective region, at low levels around 700 hPa through most of the developing and early mature stages. During the late mature and dissipating stages, a double-peak structure in Q2 become very pronounced. The coexistence of convective and stratiform drying appears to be the causal mechanism for the double peak in Q2 at these stages. At later stages, a single drying peak resulting from the stratiform region was present at middle levels around 475 pHa.
    • Download: (2.025Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat and Moisture Budgets and Circulation Characteristics of a Frontal Squall Line

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157518
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLin, Xin
    contributor authorJohnson, Richard H.
    date accessioned2017-06-09T14:32:18Z
    date available2017-06-09T14:32:18Z
    date copyright1994/06/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21204.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157518
    description abstractHeat and moisture budgets and mesoscale circulation features for the developing, mature, and dissipating stages of an intense frontal squall line that occurred in the central United States are investigated. The slow propagating behavior of the squall line made the dataset unique since observations covered a large fraction of the squall line life cycle. Budgets have been performed at six different times at intervals of 90 minutes using 1985 OK PRE-STORM rawinsonde data. The squall line was followed by a low-level cold front. The flow pattern normal to the squall line was generally similar to previous squall line studies except that a low-level rear inflow associated with the cold front was superimposed upon expected squall line FTR/RTF (front to rear/rear to front) flows. The midlevel RTF flow was quite weak well behind the squall line during the developing and mature stages and significantly strengthened during the dissipating stage as the stratiform region developed, suggesting that internal processes within the expanding stratiform region played an important role in RTF flow development. A convergence band resulting from system RTF and FTR flows extended upward and rearward from low levels near the leading edge of the system. During the developing and mature stages, peak convergence was located at low levels around the leading edge. At the dissipating stage, midlevel convergence behind the convective region intensified as the stratiform region developed, while low-level convergence near the leading edge gradually weakened. Both the apparent heat source Q1, and apparent moisture sink Q2 showed an increasing upshear tilt when the stratiform region developed, as did the vertical velocity field. The system-averaged heating peak Q1 was located at middle levels between 500 and 550 hPa throughout the evolution. The moisture sink Q2 exhibited a single drying peak, which resulted from the convective region, at low levels around 700 hPa through most of the developing and early mature stages. During the late mature and dissipating stages, a double-peak structure in Q2 become very pronounced. The coexistence of convective and stratiform drying appears to be the causal mechanism for the double peak in Q2 at these stages. At later stages, a single drying peak resulting from the stratiform region was present at middle levels around 475 pHa.
    publisherAmerican Meteorological Society
    titleHeat and Moisture Budgets and Circulation Characteristics of a Frontal Squall Line
    typeJournal Paper
    journal volume51
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<1661:HAMBAC>2.0.CO;2
    journal fristpage1661
    journal lastpage1681
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian