YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Preferred Latitudes of the Intertropical Convergence Zone

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 012::page 1619
    Author:
    Waliser, Duane E.
    ,
    Somerville, Richard C. J.
    DOI: 10.1175/1520-0469(1994)051<1619:PLOTIC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The latitude preference of the intertropical convergence zone (ITCZ) is examined on the basis of observations, theory, and a modeling analysis. Observations show that convection is enhanced at latitudes of about 4° to 10° relative to the equator, even in regions where the sea surface temperature (SST) is maximum on the equator. Both linear shallow-water theory and a moist primitive equation model suggest a new explanation for the off-equatorial latitude preference of the ITCZ that requires neither the existence of zonally propagating disturbances nor an off-equatorial maximum in SST. The shallow-water theory indicates that a finite-width, zonally oriented, midtropospheric heat source (i.e., an ITCZ) produces the greatest local low-level convergence when placed a finite distance away from the equator. This result suggests that an ITCZ is most likely to be supported via low-level convergence of moist energy when located at these ?preferred? latitudes away from the equator. For a plausible range of heating widths and damping parameters, the theoretically predicted latitude is approximately equal to the observed position(s) of the ITCZ(s). Analysis with an axially symmetric, moist, primitive equation model indicates that when the latent heating field is allowed to be determined internally, a positive feedback develops between the midtropospheric latent heating and the low-level convergence, with the effect of enhancing the organization of convection at latitudes of about 4° to 12°. Numerical experiments show that 1) two peaks in convective precipitation develop straddling the equator when the SST maximum is located on the equator; 2) steady ITCZ-like structures form only when the SST maximum is located away from the equator; and 3) peaks in convection can develop away from the maximum in SST, with a particular preference for latitudes of about 4° to 12°, even in the (?cold?) hemisphere without the SST maximum. The relationship between this mechanism and earlier theories is discussed, as are implications for the coupled ocean-atmosphere system and the roles played by midlevel latent heating and SST gradients in forcing the low-level atmospheric circulation in the tropics.
    • Download: (2.191Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Preferred Latitudes of the Intertropical Convergence Zone

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157516
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorWaliser, Duane E.
    contributor authorSomerville, Richard C. J.
    date accessioned2017-06-09T14:32:17Z
    date available2017-06-09T14:32:17Z
    date copyright1994/06/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21202.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157516
    description abstractThe latitude preference of the intertropical convergence zone (ITCZ) is examined on the basis of observations, theory, and a modeling analysis. Observations show that convection is enhanced at latitudes of about 4° to 10° relative to the equator, even in regions where the sea surface temperature (SST) is maximum on the equator. Both linear shallow-water theory and a moist primitive equation model suggest a new explanation for the off-equatorial latitude preference of the ITCZ that requires neither the existence of zonally propagating disturbances nor an off-equatorial maximum in SST. The shallow-water theory indicates that a finite-width, zonally oriented, midtropospheric heat source (i.e., an ITCZ) produces the greatest local low-level convergence when placed a finite distance away from the equator. This result suggests that an ITCZ is most likely to be supported via low-level convergence of moist energy when located at these ?preferred? latitudes away from the equator. For a plausible range of heating widths and damping parameters, the theoretically predicted latitude is approximately equal to the observed position(s) of the ITCZ(s). Analysis with an axially symmetric, moist, primitive equation model indicates that when the latent heating field is allowed to be determined internally, a positive feedback develops between the midtropospheric latent heating and the low-level convergence, with the effect of enhancing the organization of convection at latitudes of about 4° to 12°. Numerical experiments show that 1) two peaks in convective precipitation develop straddling the equator when the SST maximum is located on the equator; 2) steady ITCZ-like structures form only when the SST maximum is located away from the equator; and 3) peaks in convection can develop away from the maximum in SST, with a particular preference for latitudes of about 4° to 12°, even in the (?cold?) hemisphere without the SST maximum. The relationship between this mechanism and earlier theories is discussed, as are implications for the coupled ocean-atmosphere system and the roles played by midlevel latent heating and SST gradients in forcing the low-level atmospheric circulation in the tropics.
    publisherAmerican Meteorological Society
    titlePreferred Latitudes of the Intertropical Convergence Zone
    typeJournal Paper
    journal volume51
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<1619:PLOTIC>2.0.CO;2
    journal fristpage1619
    journal lastpage1639
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian