YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observations of Cloud-Top Entrainment in Marine Stratocumulus Clouds

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 011::page 1530
    Author:
    Wang, Qing
    ,
    Albrecht, Bruce A.
    DOI: 10.1175/1520-0469(1994)051<1530:OOCTEI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Measurements of the thermodynamic and dynamic properties of entrainment events in marine stratocumulus are used to explain why cloud-top entrainment instability may not lead to the breakup of the clouds and to define the role of cloud-top entrainment on the turbulent mixing processes when buoyancy reversal due to mixing is released. The measurements were made off the coast of California during the First ISCCP Regional Experiment (FIRE 1987) by the NCAR Electra research aircraft. The data used in this study were collected on a day when the cloud-top jump conditions indicate possible buoyancy reversal for the entrained parcels that mix with cloudy air. The entrainment events are identified using a conditional sampling method. Ozone concentration is used as a tracer of inversion air to define the entrainment mixing fraction. It is found that cloud-top entrainment ceases to be a mere interfacial phenomenon when buoyancy reversal of the entrainment parcel occurs. Strong entrainment preferentially occurs in the downdraft branch of the boundary-layer circulation, and its effect is not confined to a region near the cloud top. In the case studied here, the contribution to the negative buoyancy in the entrainment downdrafts through evaporative cooling is comparable with that from radiative cooling. The buoyancy deficit as the result of evaporation of cloud droplets is found to be insufficient to promote enhanced entrainment that leads to the breakup of the cloud deck, as suggested by the simple application of cloud-top entrainment instability (CTEI). A conceptual model for cloud-top entrainment that results in buoyancy reversal is proposed. This model emphasizes the interaction between entrainment and the boundary-layer circulation. According to this conceptual model, while buoyancy reversal tends to maintain a well-mixed boundary layer by providing deficit negative buoyancy to drive turbulent mixing, it may also accelerate the thinning and dissipation of a cloud deck once the boundary layer is decoupled by other processes such as solar absorption or drizzle. It is suggested here that a simple criterion for CTEI based solely on the cloud-top discontinuities is unlikely to exist since the dynamics of the entire boundary layer are involved in the entrainment process.
    • Download: (1.406Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observations of Cloud-Top Entrainment in Marine Stratocumulus Clouds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157508
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorWang, Qing
    contributor authorAlbrecht, Bruce A.
    date accessioned2017-06-09T14:32:16Z
    date available2017-06-09T14:32:16Z
    date copyright1994/06/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21196.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157508
    description abstractMeasurements of the thermodynamic and dynamic properties of entrainment events in marine stratocumulus are used to explain why cloud-top entrainment instability may not lead to the breakup of the clouds and to define the role of cloud-top entrainment on the turbulent mixing processes when buoyancy reversal due to mixing is released. The measurements were made off the coast of California during the First ISCCP Regional Experiment (FIRE 1987) by the NCAR Electra research aircraft. The data used in this study were collected on a day when the cloud-top jump conditions indicate possible buoyancy reversal for the entrained parcels that mix with cloudy air. The entrainment events are identified using a conditional sampling method. Ozone concentration is used as a tracer of inversion air to define the entrainment mixing fraction. It is found that cloud-top entrainment ceases to be a mere interfacial phenomenon when buoyancy reversal of the entrainment parcel occurs. Strong entrainment preferentially occurs in the downdraft branch of the boundary-layer circulation, and its effect is not confined to a region near the cloud top. In the case studied here, the contribution to the negative buoyancy in the entrainment downdrafts through evaporative cooling is comparable with that from radiative cooling. The buoyancy deficit as the result of evaporation of cloud droplets is found to be insufficient to promote enhanced entrainment that leads to the breakup of the cloud deck, as suggested by the simple application of cloud-top entrainment instability (CTEI). A conceptual model for cloud-top entrainment that results in buoyancy reversal is proposed. This model emphasizes the interaction between entrainment and the boundary-layer circulation. According to this conceptual model, while buoyancy reversal tends to maintain a well-mixed boundary layer by providing deficit negative buoyancy to drive turbulent mixing, it may also accelerate the thinning and dissipation of a cloud deck once the boundary layer is decoupled by other processes such as solar absorption or drizzle. It is suggested here that a simple criterion for CTEI based solely on the cloud-top discontinuities is unlikely to exist since the dynamics of the entire boundary layer are involved in the entrainment process.
    publisherAmerican Meteorological Society
    titleObservations of Cloud-Top Entrainment in Marine Stratocumulus Clouds
    typeJournal Paper
    journal volume51
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<1530:OOCTEI>2.0.CO;2
    journal fristpage1530
    journal lastpage1547
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian