YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Thermodynamic Equilibrium Climate Model for Monthly Mean Surface Winds and Precipitation over the Tropical Pacific

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 011::page 1372
    Author:
    Li, Tianming
    ,
    Wang, Bin
    DOI: 10.1175/1520-0469(1994)051<1372:ATECMF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Diagnosis of the dynamic and thermodynamic balances using observed climatological monthly mean data reveals that 1) anisotropic, latitude-dependent Rayleigh friction coefficients lead to much improved modeling of the monthly mean surface wind field for a given monthly mean sea level pressure field, and 2) the annual variation of the vertically averaged lapse rate is important for modeling sea level pressure. Based on the aforementioned observations, a thermodynamic equilibrium climate model for the tropical Pacific is proposed. In this model, the sea level pressure is thermodynamically determined from sea surface temperature (SST) through a vertically integrated hydrostatic equation in which the vertical mean lapse rate is a function of SST plus a time-independent correction. The surface winds are then computed from sea level pressure gradients through a linear surface momentum balance with anisotropic, latitude-dependent Rayleigh friction coefficients. The precipitation is finally obtained from a moisture budget by taking into account the effects of SST on convective instability. Despite its simplicity, the model is capable of simulating realistic annual cycles as well as interannual variations of the surface wind, sea level pressure, and precipitation over the tropical Pacific. The success of the model suggests that the tropical atmosphere on a monthly mean time scale is, to the lowest-order approximation, in a thermodynamic equilibrium state in which sea level pressure is primarily controlled by SST and the effects of dynamic feedback on sea level pressure may be parameterized by an empirical SST-lapse rate relationship. Further studies are needed to establish a firm physical basis for the proposed parameterization.
    • Download: (1.237Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Thermodynamic Equilibrium Climate Model for Monthly Mean Surface Winds and Precipitation over the Tropical Pacific

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157498
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLi, Tianming
    contributor authorWang, Bin
    date accessioned2017-06-09T14:32:15Z
    date available2017-06-09T14:32:15Z
    date copyright1994/06/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21187.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157498
    description abstractDiagnosis of the dynamic and thermodynamic balances using observed climatological monthly mean data reveals that 1) anisotropic, latitude-dependent Rayleigh friction coefficients lead to much improved modeling of the monthly mean surface wind field for a given monthly mean sea level pressure field, and 2) the annual variation of the vertically averaged lapse rate is important for modeling sea level pressure. Based on the aforementioned observations, a thermodynamic equilibrium climate model for the tropical Pacific is proposed. In this model, the sea level pressure is thermodynamically determined from sea surface temperature (SST) through a vertically integrated hydrostatic equation in which the vertical mean lapse rate is a function of SST plus a time-independent correction. The surface winds are then computed from sea level pressure gradients through a linear surface momentum balance with anisotropic, latitude-dependent Rayleigh friction coefficients. The precipitation is finally obtained from a moisture budget by taking into account the effects of SST on convective instability. Despite its simplicity, the model is capable of simulating realistic annual cycles as well as interannual variations of the surface wind, sea level pressure, and precipitation over the tropical Pacific. The success of the model suggests that the tropical atmosphere on a monthly mean time scale is, to the lowest-order approximation, in a thermodynamic equilibrium state in which sea level pressure is primarily controlled by SST and the effects of dynamic feedback on sea level pressure may be parameterized by an empirical SST-lapse rate relationship. Further studies are needed to establish a firm physical basis for the proposed parameterization.
    publisherAmerican Meteorological Society
    titleA Thermodynamic Equilibrium Climate Model for Monthly Mean Surface Winds and Precipitation over the Tropical Pacific
    typeJournal Paper
    journal volume51
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<1372:ATECMF>2.0.CO;2
    journal fristpage1372
    journal lastpage1385
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian