YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Low-Frequency Circulation Modes in the Global Atmosphere

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 009::page 1169
    Author:
    Lau, K-M.
    ,
    Sheu, P-J.
    ,
    Kang, I-S.
    DOI: 10.1175/1520-0469(1994)051<1169:MLFCMI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this paper, fundamental multiscale circulation modes in the global atmosphere are identified with the objective of providing better understanding of atmospheric low-frequency variabilities over a wide range of spatial and temporal scales. With the use of a combination of rotated principal component technique, singular spectrum analysis, and phase space portraits, three categories of basic multiscale modes in the atmosphere are found. The first is the interannual mode (IAM), which is dominated by time scales longer than a year and can be attributed to heating and circulation anomalies associated with the coupled tropical ocean-atmosphere, in particular the E1 Niño?Southern Oscillation. The second is a set of tropical intraseasonal modes consisting of three separate multiscale patterns (ISO-1, -2, -3) related to tropical heating that can be identified with the different phases of the Madden?Julian Oscillation (MJO), including its teleconnection to the extratropics. The ISO spatial and temporal patterns suggest that the extratropical wave train in the North Pacific and North America is related to heating over the Maritime Continent and that the evolution of the MJO around the equator may require forcing from the extratropics spawning convection over the Indian Ocean. The third category represents extratropical intraseasonal oscillations arising from internal dynamics of the basic-state circulation. In the Northern Hemisphere, there are two distinct circulation modes with multiple frequencies in this category: the Pacific/North America (PNA) and the North Atlantic/Eurasia (NAE). In the Southern Hemisphere, two phase-locked modes (PSA-1 and PSA-2) are found depicting an eastward propagating wave train from eastern Australia, via the Pacific South America to the South Atlantic. The extratropical modes exhibit temporal characteristics such as phase locking and harmonic oscillations possibly associated with quadratically nonlinear dynamical systems. Additionally, the observed monthly and seasonal anomalies arise from a complex interplay of the various multiscale low-frequency modes. The relative dominance of the different modes varies widely from month to month and from year to year. On the monthly time scale, while one or two mechanisms may dominate in one year, no single mechanism seems to dominate for all years. There are indications that when the IAM, that is, ENSO heating patterns are strong, the extratropical modes may be suppressed and vice versa. For the seasonal mean, the interannual mode tends to dominate and the contribution from the PNA remains quite significant.
    • Download: (1.931Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Low-Frequency Circulation Modes in the Global Atmosphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157483
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLau, K-M.
    contributor authorSheu, P-J.
    contributor authorKang, I-S.
    date accessioned2017-06-09T14:32:12Z
    date available2017-06-09T14:32:12Z
    date copyright1994/05/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21173.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157483
    description abstractIn this paper, fundamental multiscale circulation modes in the global atmosphere are identified with the objective of providing better understanding of atmospheric low-frequency variabilities over a wide range of spatial and temporal scales. With the use of a combination of rotated principal component technique, singular spectrum analysis, and phase space portraits, three categories of basic multiscale modes in the atmosphere are found. The first is the interannual mode (IAM), which is dominated by time scales longer than a year and can be attributed to heating and circulation anomalies associated with the coupled tropical ocean-atmosphere, in particular the E1 Niño?Southern Oscillation. The second is a set of tropical intraseasonal modes consisting of three separate multiscale patterns (ISO-1, -2, -3) related to tropical heating that can be identified with the different phases of the Madden?Julian Oscillation (MJO), including its teleconnection to the extratropics. The ISO spatial and temporal patterns suggest that the extratropical wave train in the North Pacific and North America is related to heating over the Maritime Continent and that the evolution of the MJO around the equator may require forcing from the extratropics spawning convection over the Indian Ocean. The third category represents extratropical intraseasonal oscillations arising from internal dynamics of the basic-state circulation. In the Northern Hemisphere, there are two distinct circulation modes with multiple frequencies in this category: the Pacific/North America (PNA) and the North Atlantic/Eurasia (NAE). In the Southern Hemisphere, two phase-locked modes (PSA-1 and PSA-2) are found depicting an eastward propagating wave train from eastern Australia, via the Pacific South America to the South Atlantic. The extratropical modes exhibit temporal characteristics such as phase locking and harmonic oscillations possibly associated with quadratically nonlinear dynamical systems. Additionally, the observed monthly and seasonal anomalies arise from a complex interplay of the various multiscale low-frequency modes. The relative dominance of the different modes varies widely from month to month and from year to year. On the monthly time scale, while one or two mechanisms may dominate in one year, no single mechanism seems to dominate for all years. There are indications that when the IAM, that is, ENSO heating patterns are strong, the extratropical modes may be suppressed and vice versa. For the seasonal mean, the interannual mode tends to dominate and the contribution from the PNA remains quite significant.
    publisherAmerican Meteorological Society
    titleMultiscale Low-Frequency Circulation Modes in the Global Atmosphere
    typeJournal Paper
    journal volume51
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<1169:MLFCMI>2.0.CO;2
    journal fristpage1169
    journal lastpage1193
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian