YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Solar Radiative Transfer for Wind-Sheared Cumulus Cloud Fields

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 009::page 1141
    Author:
    Barker, Howard W.
    DOI: 10.1175/1520-0469(1994)051<1141:SRTFWS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Monte Carlo method of photon transport was used to simulate solar radiative transfer for cumulus-like cloud forms (and cloud fields) possessing structural characteristics similar to those induced by wind shear. Using regular infinite arrays of finite, slanted-cuboidal clouds (parallelepipeds), it was demonstrated that the magnitude of cloud field albedo variation as a function of relative solar azimuth angle (up to 40% of albedo) can be larger than the albedo disparities between plane-parallel clouds and fields of nonsheared finite clouds. In general, cloud field albedo is maximized when shearing is away from the sun and minimized when shearing is toward the sun. This is explained by changes in effective cloud fraction presented to the direct solar beam. The albedo of individual clouds, on the other hand, is maximized when shearing is toward the sun, especially when shearing angle equals solar zenith angle. This is because of both reduced irradiance onto cloud sides and enhanced effective optical depth of cloud. These results were corroborated by conducting similar experiments using realistic cloud forms generated by a dynamical/microphysical cloud model. The magnitude of albedo differences between sheared and corresponding nonsheared broken clouds reached 25% of the albedo. Again, this is due to differing effective cloud fractions and side illumination. It was found that the bidirectional reflectance functions (BDRFs) of sheared clouds are sensitive to solar azimuth angle. Relative differences between BDRFs for clouds sheared toward and away from the sun can be as large as 50% for arrays of idealized parallelepiped clouds and 25% for more realistic clouds. Differences are minimized when viewing is perpendicular to the wind shear direction provided clouds are sheared toward or away from the sun. BDRFs for sheared clouds are much more asymmetric near the zenith than BDRFs for corresponding cubic (nonsheared) clouds. Hence, viewing sheared clouds at a 60° zenith angle will not necessarily provide least biased estimates of cloud field albedo as is the case for nonsheared clouds. Finally, it was demonstrated that BDRF differences arising from use of Mie and Henyey?Greenstein phase functions are substantially smaller than differences associated with varying solar azimuth angle.
    • Download: (1.065Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Solar Radiative Transfer for Wind-Sheared Cumulus Cloud Fields

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157481
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBarker, Howard W.
    date accessioned2017-06-09T14:32:12Z
    date available2017-06-09T14:32:12Z
    date copyright1994/05/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21171.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157481
    description abstractThe Monte Carlo method of photon transport was used to simulate solar radiative transfer for cumulus-like cloud forms (and cloud fields) possessing structural characteristics similar to those induced by wind shear. Using regular infinite arrays of finite, slanted-cuboidal clouds (parallelepipeds), it was demonstrated that the magnitude of cloud field albedo variation as a function of relative solar azimuth angle (up to 40% of albedo) can be larger than the albedo disparities between plane-parallel clouds and fields of nonsheared finite clouds. In general, cloud field albedo is maximized when shearing is away from the sun and minimized when shearing is toward the sun. This is explained by changes in effective cloud fraction presented to the direct solar beam. The albedo of individual clouds, on the other hand, is maximized when shearing is toward the sun, especially when shearing angle equals solar zenith angle. This is because of both reduced irradiance onto cloud sides and enhanced effective optical depth of cloud. These results were corroborated by conducting similar experiments using realistic cloud forms generated by a dynamical/microphysical cloud model. The magnitude of albedo differences between sheared and corresponding nonsheared broken clouds reached 25% of the albedo. Again, this is due to differing effective cloud fractions and side illumination. It was found that the bidirectional reflectance functions (BDRFs) of sheared clouds are sensitive to solar azimuth angle. Relative differences between BDRFs for clouds sheared toward and away from the sun can be as large as 50% for arrays of idealized parallelepiped clouds and 25% for more realistic clouds. Differences are minimized when viewing is perpendicular to the wind shear direction provided clouds are sheared toward or away from the sun. BDRFs for sheared clouds are much more asymmetric near the zenith than BDRFs for corresponding cubic (nonsheared) clouds. Hence, viewing sheared clouds at a 60° zenith angle will not necessarily provide least biased estimates of cloud field albedo as is the case for nonsheared clouds. Finally, it was demonstrated that BDRF differences arising from use of Mie and Henyey?Greenstein phase functions are substantially smaller than differences associated with varying solar azimuth angle.
    publisherAmerican Meteorological Society
    titleSolar Radiative Transfer for Wind-Sheared Cumulus Cloud Fields
    typeJournal Paper
    journal volume51
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<1141:SRTFWS>2.0.CO;2
    journal fristpage1141
    journal lastpage1156
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian