YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience

    Source: Journal of Atmospheric and Oceanic Technology:;2003:;volume( 020 ):;issue: 001::page 117
    Author:
    Turner, D. D.
    ,
    Lesht, B. M.
    ,
    Clough, S. A.
    ,
    Liljegren, J. C.
    ,
    Revercomb, H. E.
    ,
    Tobin, D. C.
    DOI: 10.1175/1520-0426(2003)020<0117:DBAVIV>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Thousands of comparisons between total precipitable water vapor (PWV) obtained from radiosonde (Vaisala RS80-H) profiles and PWV retrieved from a collocated microwave radiometer (MWR) were made at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains Cloud and Radiation Testbed (SGP CART) site in northern Oklahoma from 1994 to 2000. These comparisons show that the RS80-H radiosonde has an approximate 5% dry bias compared to the MWR. This observation is consistent with interpretations of Vaisala RS80 radiosonde data obtained during the Tropical Ocean Global Atmosphere Coupled Ocean?Atmosphere Response Experiment (TOGA COARE). In addition to the dry bias, analysis of the PWV comparisons as well as of data obtained from dual-sonde soundings done at the SGP show that the calibration of the radiosonde humidity measurements varies considerably both when the radiosondes come from different calibration batches and when the radiosondes come from the same calibration batch. This variability can result in peak-to-peak differences between radiosondes of greater than 25% in PWV. Because accurate representation of the vertical profile of water vapor is critical for ARM's science objectives, an empirical method for correcting the radiosonde humidity profiles is developed based on a constant scaling factor. By using an independent set of observations and radiative transfer models to test the correction, it is shown that the constant humidity scaling method appears both to improve the accuracy and reduce the uncertainty of the radiosonde data. The ARM data are also used to examine a different, physically based, correction scheme that was developed recently by scientists from Vaisala and the National Center for Atmospheric Research (NCAR). This scheme, which addresses the dry bias problem as well as other calibration-related problems with the RS80-H sensor, results in excellent agreement between the PWV retrieved from the MWR and integrated from the corrected radiosonde. However, because the physically based correction scheme does not address the apparently random calibration variations observed, it does not reduce the variability either between radiosonde calibration batches or within individual calibration batches.
    • Download: (1.351Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157424
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorTurner, D. D.
    contributor authorLesht, B. M.
    contributor authorClough, S. A.
    contributor authorLiljegren, J. C.
    contributor authorRevercomb, H. E.
    contributor authorTobin, D. C.
    date accessioned2017-06-09T14:32:02Z
    date available2017-06-09T14:32:02Z
    date copyright2003/01/01
    date issued2003
    identifier issn0739-0572
    identifier otherams-2112.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157424
    description abstractThousands of comparisons between total precipitable water vapor (PWV) obtained from radiosonde (Vaisala RS80-H) profiles and PWV retrieved from a collocated microwave radiometer (MWR) were made at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains Cloud and Radiation Testbed (SGP CART) site in northern Oklahoma from 1994 to 2000. These comparisons show that the RS80-H radiosonde has an approximate 5% dry bias compared to the MWR. This observation is consistent with interpretations of Vaisala RS80 radiosonde data obtained during the Tropical Ocean Global Atmosphere Coupled Ocean?Atmosphere Response Experiment (TOGA COARE). In addition to the dry bias, analysis of the PWV comparisons as well as of data obtained from dual-sonde soundings done at the SGP show that the calibration of the radiosonde humidity measurements varies considerably both when the radiosondes come from different calibration batches and when the radiosondes come from the same calibration batch. This variability can result in peak-to-peak differences between radiosondes of greater than 25% in PWV. Because accurate representation of the vertical profile of water vapor is critical for ARM's science objectives, an empirical method for correcting the radiosonde humidity profiles is developed based on a constant scaling factor. By using an independent set of observations and radiative transfer models to test the correction, it is shown that the constant humidity scaling method appears both to improve the accuracy and reduce the uncertainty of the radiosonde data. The ARM data are also used to examine a different, physically based, correction scheme that was developed recently by scientists from Vaisala and the National Center for Atmospheric Research (NCAR). This scheme, which addresses the dry bias problem as well as other calibration-related problems with the RS80-H sensor, results in excellent agreement between the PWV retrieved from the MWR and integrated from the corrected radiosonde. However, because the physically based correction scheme does not address the apparently random calibration variations observed, it does not reduce the variability either between radiosonde calibration batches or within individual calibration batches.
    publisherAmerican Meteorological Society
    titleDry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience
    typeJournal Paper
    journal volume20
    journal issue1
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2003)020<0117:DBAVIV>2.0.CO;2
    journal fristpage117
    journal lastpage132
    treeJournal of Atmospheric and Oceanic Technology:;2003:;volume( 020 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian