YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Zonal Flow Vacillation and Eddy Forcing in a Simple GCM of the Atmosphere

    Source: Journal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 019::page 3244
    Author:
    Yu, Jin-Yi
    ,
    Hartmann, Dennis L.
    DOI: 10.1175/1520-0469(1993)050<3244:ZFVAEF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Zonal flow vacillation with very long time scales is observed in a 3070-day simple GCM simulation with zonally symmetric forcing. The long lasting zonal wind anomalies suggest that zonal flow vacillation is self-maintained. Wave-mean flow interactions are investigated by composite analysis and transform Eulerian momentum budget analysis. Nonlinear life-cycle simulations are conducted to demonstrate that each extreme phase of the zonal flow vacillation is a quasi stable state and is self-maintained by the embedded synoptic eddies. The firm EOF mode of zonal-mean wind shows an out of phase relation between anomalies at 60°S and at 40°S with a barotropic structure. This structure is similar to the dominant vacillation pattern observed in the Southern Hemisphere. The composite jet stream in the high (low) index phase of zonal flow vacillation shifts poleward (equatorward) from the time-mean location and becomes broader (narrower) and weaker (stronger). Composite eddies in the high index Phase tilt NW-SE and show mostly equatorward propagation, while eddies in the low index phase have ?banana? shapes and propagate both equatorward and poleward. Transformed Eulerian momentum budget analyses show that the differences of wave propagation between two extreme phases result in the anomalous eddy forcing needed to maintain zonal wind anomalies against frictional damping. Budget analyses also indicate that eddy momentum flux convergence is the major positive forcing in both the extreme and transition phases. Eddy baroclinic forcing exerts weak damping on the wind anomalies in the upper troposphere but acts together with residual circulation forcing to counteract frictional damping near the surface. The major balance during the index cycle is between eddy barotropic forcing and residual circulation forcing in the upper troposphere and between residual circulation forcing and frictional damping in the lower troposphere. Further comparisons of eddy forcing from various time-scale eddies show that the anomalous eddy forcing is primarily provided by synoptic time scales. Two nonlinear life-cycle simulations, started separately from the composite zonal flows of the two extreme phases and small-amplitude wavenumber 6 perturbations, display the intensification of initial wind anomalies by the growing eddies. A dual-jet stream structure appears in the life-cycle simulation started from the high index composite, and a more intense single jet stream structure evolves from the low index initial state. It is noticed that maximum wind anomalies are established earlier at higher latitudes than at lower latitudes. This suggests that the mechanisms triggering transitions from one self-maintained phase to the other operate at higher latitudes. It is suspected that barotropic instability/stability is a possible triggering mechanism for transition from one state to another.
    • Download: (1.307Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Zonal Flow Vacillation and Eddy Forcing in a Simple GCM of the Atmosphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157337
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorYu, Jin-Yi
    contributor authorHartmann, Dennis L.
    date accessioned2017-06-09T14:31:50Z
    date available2017-06-09T14:31:50Z
    date copyright1993/10/01
    date issued1993
    identifier issn0022-4928
    identifier otherams-21041.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157337
    description abstractZonal flow vacillation with very long time scales is observed in a 3070-day simple GCM simulation with zonally symmetric forcing. The long lasting zonal wind anomalies suggest that zonal flow vacillation is self-maintained. Wave-mean flow interactions are investigated by composite analysis and transform Eulerian momentum budget analysis. Nonlinear life-cycle simulations are conducted to demonstrate that each extreme phase of the zonal flow vacillation is a quasi stable state and is self-maintained by the embedded synoptic eddies. The firm EOF mode of zonal-mean wind shows an out of phase relation between anomalies at 60°S and at 40°S with a barotropic structure. This structure is similar to the dominant vacillation pattern observed in the Southern Hemisphere. The composite jet stream in the high (low) index phase of zonal flow vacillation shifts poleward (equatorward) from the time-mean location and becomes broader (narrower) and weaker (stronger). Composite eddies in the high index Phase tilt NW-SE and show mostly equatorward propagation, while eddies in the low index phase have ?banana? shapes and propagate both equatorward and poleward. Transformed Eulerian momentum budget analyses show that the differences of wave propagation between two extreme phases result in the anomalous eddy forcing needed to maintain zonal wind anomalies against frictional damping. Budget analyses also indicate that eddy momentum flux convergence is the major positive forcing in both the extreme and transition phases. Eddy baroclinic forcing exerts weak damping on the wind anomalies in the upper troposphere but acts together with residual circulation forcing to counteract frictional damping near the surface. The major balance during the index cycle is between eddy barotropic forcing and residual circulation forcing in the upper troposphere and between residual circulation forcing and frictional damping in the lower troposphere. Further comparisons of eddy forcing from various time-scale eddies show that the anomalous eddy forcing is primarily provided by synoptic time scales. Two nonlinear life-cycle simulations, started separately from the composite zonal flows of the two extreme phases and small-amplitude wavenumber 6 perturbations, display the intensification of initial wind anomalies by the growing eddies. A dual-jet stream structure appears in the life-cycle simulation started from the high index composite, and a more intense single jet stream structure evolves from the low index initial state. It is noticed that maximum wind anomalies are established earlier at higher latitudes than at lower latitudes. This suggests that the mechanisms triggering transitions from one self-maintained phase to the other operate at higher latitudes. It is suspected that barotropic instability/stability is a possible triggering mechanism for transition from one state to another.
    publisherAmerican Meteorological Society
    titleZonal Flow Vacillation and Eddy Forcing in a Simple GCM of the Atmosphere
    typeJournal Paper
    journal volume50
    journal issue19
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1993)050<3244:ZFVAEF>2.0.CO;2
    journal fristpage3244
    journal lastpage3259
    treeJournal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian