YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Linear Eddy Modeling of Entrainment and Mixing in Stratus Clouds

    Source: Journal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 018::page 3078
    Author:
    Krueger, Steven K.
    DOI: 10.1175/1520-0469(1993)050<3078:LEMOEA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Mixing of entrained air in stratus clouds is an important but poorly understood process. It is a crucial ingredient of cloud-top entrainment instability (CEI). CEI has been proposed as a breakup mechanism for stratus clouds. A recently developed model called the linear eddy model was used to simulate mixing of air entrained into stratus clouds. The linear eddy approach involves stochastic simulation on a one-dimensional domain with sufficient resolution to include all physically relevant length scales. In each realization, molecular diffusion is implemented explicitly, while a sequence of statistically independent ?rearrangement events? represents the effect of turbulent eddies. Inertial range scaling is incorporated. The linear eddy model was used to simulate the mixing of one or more wisps of entrained air with a specified volume of cloud-topped boundary layer (CTBL) air. The volume was idealized to be a horizontal slab of fluid that travels from the top of the CTBL down to the surface in the descending branch of a large convective eddy. The probability density function of the mixing fraction of entrained air was determined from linear eddy model simulations as a function of time for a mean mixing fraction of 0.05 and three wisp sizes. The effect of the mixing on the mean buoyancy of the downdraft could then be calculated given a specification of the buoyancy as a function of mixing fraction. In the simulations, the entrained air did not completely mix with cloudy air just below the CTBL top, nor was uniform saturation maintained. Furthermore, when buoyancy functions typical of observed CTBLs were used, the mean downdraft buoyancy due to entrainment and mixing integrated over the cloud layer remained positive. This suggests that CEI is unlikely in stratocumulus. An additional conclusion is that using reduced spatial resolutions typical of published large-eddy simulations (LES) of CTBLs in mixing simulations significantly underestimates the buoyancy in the cloud layer near cloud top. This may explain why low-resolution LFS simulations have exhibited CEI under conditions for which CEI is not observed in the atmosphere.
    • Download: (1014.Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Linear Eddy Modeling of Entrainment and Mixing in Stratus Clouds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157326
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKrueger, Steven K.
    date accessioned2017-06-09T14:31:47Z
    date available2017-06-09T14:31:47Z
    date copyright1993/09/01
    date issued1993
    identifier issn0022-4928
    identifier otherams-21031.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157326
    description abstractMixing of entrained air in stratus clouds is an important but poorly understood process. It is a crucial ingredient of cloud-top entrainment instability (CEI). CEI has been proposed as a breakup mechanism for stratus clouds. A recently developed model called the linear eddy model was used to simulate mixing of air entrained into stratus clouds. The linear eddy approach involves stochastic simulation on a one-dimensional domain with sufficient resolution to include all physically relevant length scales. In each realization, molecular diffusion is implemented explicitly, while a sequence of statistically independent ?rearrangement events? represents the effect of turbulent eddies. Inertial range scaling is incorporated. The linear eddy model was used to simulate the mixing of one or more wisps of entrained air with a specified volume of cloud-topped boundary layer (CTBL) air. The volume was idealized to be a horizontal slab of fluid that travels from the top of the CTBL down to the surface in the descending branch of a large convective eddy. The probability density function of the mixing fraction of entrained air was determined from linear eddy model simulations as a function of time for a mean mixing fraction of 0.05 and three wisp sizes. The effect of the mixing on the mean buoyancy of the downdraft could then be calculated given a specification of the buoyancy as a function of mixing fraction. In the simulations, the entrained air did not completely mix with cloudy air just below the CTBL top, nor was uniform saturation maintained. Furthermore, when buoyancy functions typical of observed CTBLs were used, the mean downdraft buoyancy due to entrainment and mixing integrated over the cloud layer remained positive. This suggests that CEI is unlikely in stratocumulus. An additional conclusion is that using reduced spatial resolutions typical of published large-eddy simulations (LES) of CTBLs in mixing simulations significantly underestimates the buoyancy in the cloud layer near cloud top. This may explain why low-resolution LFS simulations have exhibited CEI under conditions for which CEI is not observed in the atmosphere.
    publisherAmerican Meteorological Society
    titleLinear Eddy Modeling of Entrainment and Mixing in Stratus Clouds
    typeJournal Paper
    journal volume50
    journal issue18
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1993)050<3078:LEMOEA>2.0.CO;2
    journal fristpage3078
    journal lastpage3090
    treeJournal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian