YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Understanding Albrecht's Model of Trade Cumulus Cloud Fields

    Source: Journal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 014::page 2264
    Author:
    Bretherton, Christopher S.
    DOI: 10.1175/1520-0469(1993)050<2264:UAMOTC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Using Albrecht's model, approximate analytical formulas are found for the dependence of the steady-State mean thermodynamic structure of a partly cloudy convective marine boundary layer on external parameters. Our goals are 1) to understand the physical factors that influence the vertical profiles of mean relative humidity, temperature, and fractional cloudiness within the cloud layer using the model to gain insight into the strato-cumulus-trade cumulus transition in the subtropical trade wind regime, and 2) to understand the sensitivity of the model to tunable internal parameters. The model, a prototype for bulk models of trade cumulus boundary layer, consists of a well-mixed subcloud layer topped by a cumulus layer and a sharp trade inversion. In the simplest formulation discussed here, precipitation is ignored and simple parameterizations for radiative cooling and fractional cloudiness are used. The analytical approximation agrees well with exact steady-state numerical solutions of Albrecht's model. The cloud-base and trade-inversion heights are not strongly dependent on adjustable parameters within the cloud model and are largely determined by bulk balances of radiative fluxes, surface fluxes, and subsidence in a manner similar to the more empirical model of Betts and Ridgway. The cloud-layer sounding and the cloud fraction are affected by external parameters only through changes in the cloud-base latent heat flux and the cloud thickness. The cloud fraction is quite sensitive to two tunable internal constants in the cloud model that affect rates of cloud entrainment and detrainment, respectively. For most choices of SST and upper-air conditions, these constants can be tuned to produce either a mainly saturated (stratocumulus-like) cloud layer or a trade cumulus-like layer with no environmental saturation. The sensitivity of cloud fraction to SST and mean subsidence is explored for two choices of these constants and the effect of unsteadiness due to downstream changes in external conditions are considered.
    • Download: (1.607Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Understanding Albrecht's Model of Trade Cumulus Cloud Fields

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157261
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBretherton, Christopher S.
    date accessioned2017-06-09T14:31:38Z
    date available2017-06-09T14:31:38Z
    date copyright1993/07/01
    date issued1993
    identifier issn0022-4928
    identifier otherams-20974.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157261
    description abstractUsing Albrecht's model, approximate analytical formulas are found for the dependence of the steady-State mean thermodynamic structure of a partly cloudy convective marine boundary layer on external parameters. Our goals are 1) to understand the physical factors that influence the vertical profiles of mean relative humidity, temperature, and fractional cloudiness within the cloud layer using the model to gain insight into the strato-cumulus-trade cumulus transition in the subtropical trade wind regime, and 2) to understand the sensitivity of the model to tunable internal parameters. The model, a prototype for bulk models of trade cumulus boundary layer, consists of a well-mixed subcloud layer topped by a cumulus layer and a sharp trade inversion. In the simplest formulation discussed here, precipitation is ignored and simple parameterizations for radiative cooling and fractional cloudiness are used. The analytical approximation agrees well with exact steady-state numerical solutions of Albrecht's model. The cloud-base and trade-inversion heights are not strongly dependent on adjustable parameters within the cloud model and are largely determined by bulk balances of radiative fluxes, surface fluxes, and subsidence in a manner similar to the more empirical model of Betts and Ridgway. The cloud-layer sounding and the cloud fraction are affected by external parameters only through changes in the cloud-base latent heat flux and the cloud thickness. The cloud fraction is quite sensitive to two tunable internal constants in the cloud model that affect rates of cloud entrainment and detrainment, respectively. For most choices of SST and upper-air conditions, these constants can be tuned to produce either a mainly saturated (stratocumulus-like) cloud layer or a trade cumulus-like layer with no environmental saturation. The sensitivity of cloud fraction to SST and mean subsidence is explored for two choices of these constants and the effect of unsteadiness due to downstream changes in external conditions are considered.
    publisherAmerican Meteorological Society
    titleUnderstanding Albrecht's Model of Trade Cumulus Cloud Fields
    typeJournal Paper
    journal volume50
    journal issue14
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1993)050<2264:UAMOTC>2.0.CO;2
    journal fristpage2264
    journal lastpage2283
    treeJournal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 014
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian