YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameterization of the Radiative Properties of Cirrus Clouds

    Source: Journal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 013::page 2008
    Author:
    Fu, Qiang
    ,
    Liou, K. N.
    DOI: 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A new approach for parameterization of the broadband solar and infrared radiative properties of ice clouds has been developed. This parameterization scheme integrates in a coherent manner the δ-four-stream approximation for radiative transfer, the correlated k-distribution method for nongray gaseous absorption, and the scattering and absorption properties of hexagonal ice crystals. A mean effective size is used, representing an area-weighted mean crystal width, to account for the ice crystal size distribution with respect to radiative calculation. Based on physical principles, the basic single-scattering properties of ice crystals, including the extinction coefficient divided by ice water content single-scattering albedo, and expansion coefficients of the phase function, can be parameterized using third-degree polynomials in terms of the mean effective size. In the development of this parameterization the results computed from a light scattering program that includes a Geometric ray-tracing program for size parameters larger than 30 and the exact spheroid solution for size parameters less than 30 are used. The computations are carried out for 11 observed ice crystal size distributions and cover the entire solar and thermal infrared spectra. Parameterization of the single-scattering properties is shown to provide an accuracy within about 1%. Comparisons have been carried out between results computed from the model and those obtained during the 1986 cirrus FIRE IFO. It is shown that the model results can be used to reasonably interpret the observed IR emissivities and solar albedo involving cirrus clouds. The newly developed scheme has been employed to investigate the radiative effects of ice crystal size distributions. For a given ice water path, cirrus clouds with smaller mean effective sizes reflect more solar radiation, trap more infrared radiation, and product stronger cloud-top cooling and cloud-base beating. The latter effect would enhance the in-cloud heating rate gradients. Further, the effects of ice crystal size distribution in the context of IR greenhouse versus solar albedo effects involving cirrus clouds are presented with the aid of the upward flux at the top of the atmosphere. In most cirrus cases, the IR greenhouse effect outweigh the solar albedo effect. One exception occurs when a significant number of small ice crystals are present. The present scheme for radiative transfer in the atmosphere involving cirrus clouds is well suited for incorporation in numerical models to study the climatic effects of cirrus clouds, as well as to investigate interactions and feedbacks between cloud microphysics and radiation.
    • Download: (1.339Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameterization of the Radiative Properties of Cirrus Clouds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157242
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFu, Qiang
    contributor authorLiou, K. N.
    date accessioned2017-06-09T14:31:36Z
    date available2017-06-09T14:31:36Z
    date copyright1993/07/01
    date issued1993
    identifier issn0022-4928
    identifier otherams-20957.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157242
    description abstractA new approach for parameterization of the broadband solar and infrared radiative properties of ice clouds has been developed. This parameterization scheme integrates in a coherent manner the δ-four-stream approximation for radiative transfer, the correlated k-distribution method for nongray gaseous absorption, and the scattering and absorption properties of hexagonal ice crystals. A mean effective size is used, representing an area-weighted mean crystal width, to account for the ice crystal size distribution with respect to radiative calculation. Based on physical principles, the basic single-scattering properties of ice crystals, including the extinction coefficient divided by ice water content single-scattering albedo, and expansion coefficients of the phase function, can be parameterized using third-degree polynomials in terms of the mean effective size. In the development of this parameterization the results computed from a light scattering program that includes a Geometric ray-tracing program for size parameters larger than 30 and the exact spheroid solution for size parameters less than 30 are used. The computations are carried out for 11 observed ice crystal size distributions and cover the entire solar and thermal infrared spectra. Parameterization of the single-scattering properties is shown to provide an accuracy within about 1%. Comparisons have been carried out between results computed from the model and those obtained during the 1986 cirrus FIRE IFO. It is shown that the model results can be used to reasonably interpret the observed IR emissivities and solar albedo involving cirrus clouds. The newly developed scheme has been employed to investigate the radiative effects of ice crystal size distributions. For a given ice water path, cirrus clouds with smaller mean effective sizes reflect more solar radiation, trap more infrared radiation, and product stronger cloud-top cooling and cloud-base beating. The latter effect would enhance the in-cloud heating rate gradients. Further, the effects of ice crystal size distribution in the context of IR greenhouse versus solar albedo effects involving cirrus clouds are presented with the aid of the upward flux at the top of the atmosphere. In most cirrus cases, the IR greenhouse effect outweigh the solar albedo effect. One exception occurs when a significant number of small ice crystals are present. The present scheme for radiative transfer in the atmosphere involving cirrus clouds is well suited for incorporation in numerical models to study the climatic effects of cirrus clouds, as well as to investigate interactions and feedbacks between cloud microphysics and radiation.
    publisherAmerican Meteorological Society
    titleParameterization of the Radiative Properties of Cirrus Clouds
    typeJournal Paper
    journal volume50
    journal issue13
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
    journal fristpage2008
    journal lastpage2025
    treeJournal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian