YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Intraseasonal Interactions between the Tropics and Extratropics in the Southern Hemisphere

    Source: Journal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 013::page 1950
    Author:
    Berbery, Ernesto H.
    ,
    Nogués-Paegle, Julia
    DOI: 10.1175/1520-0469(1993)050<1950:IIBTTA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The mechanics of the interaction between tropical beating [estimated from outgoing longwave radiation (OLR)] and Southern Hemisphere (SH) subtropical and extratropical circulations on intraseasonal time scales are discussed. Base points are selected from teleconnectivity and teleconnection maps between OLR and zonal wind, heights, and meridional component of the divergent wind. Then, composites are formed for pentads with OLR anomalies at the base point greater in magnitude than one standard deviation. Enhanced convection over Indonesia is found to be associated with increases of both the southward component of the meridional divergent wind and of the westerly, zonal wind to the south of the heating region during the SH summer. The increased westerly wind gradients, resulting to a certain extent from strengthened northerly flow, together with increased values of the southward component of the divergent wind, lead to an enhancement of the Rossby wave source in the vorticity equation in the vicinity of Australia. Streamfunction anomalies indicate that a wave train evolves from this region, following the typical ray path expected from linear theory. Tropical-extratropical connections are less pronounced during SH winter than during summer, though an increase of westerly winds in the SH is found associated with enhanced convective activity in the Northern Hemisphere. The increase of the zonal wind during winter is again explained by meridional overturnings that emanate from the heating regions. Isentropic trajectories are used to show that the zonal accelerations caused by the poleward motion at upper levels are in agreement with observed values. The enhancement of convective activity is also related to a southward increase of the meridional component of the divergent wind that maximizes near the equator. However, since the latitudes of maximum southward component of the meridional divergent wind differ from those with maximum changes in the gradient of absolute vorticity, no increase of the Rossby wave source or excitation of Rossby waves due to tropical heating is found during this season.
    • Download: (1.417Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Intraseasonal Interactions between the Tropics and Extratropics in the Southern Hemisphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157239
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBerbery, Ernesto H.
    contributor authorNogués-Paegle, Julia
    date accessioned2017-06-09T14:31:35Z
    date available2017-06-09T14:31:35Z
    date copyright1993/07/01
    date issued1993
    identifier issn0022-4928
    identifier otherams-20954.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157239
    description abstractThe mechanics of the interaction between tropical beating [estimated from outgoing longwave radiation (OLR)] and Southern Hemisphere (SH) subtropical and extratropical circulations on intraseasonal time scales are discussed. Base points are selected from teleconnectivity and teleconnection maps between OLR and zonal wind, heights, and meridional component of the divergent wind. Then, composites are formed for pentads with OLR anomalies at the base point greater in magnitude than one standard deviation. Enhanced convection over Indonesia is found to be associated with increases of both the southward component of the meridional divergent wind and of the westerly, zonal wind to the south of the heating region during the SH summer. The increased westerly wind gradients, resulting to a certain extent from strengthened northerly flow, together with increased values of the southward component of the divergent wind, lead to an enhancement of the Rossby wave source in the vorticity equation in the vicinity of Australia. Streamfunction anomalies indicate that a wave train evolves from this region, following the typical ray path expected from linear theory. Tropical-extratropical connections are less pronounced during SH winter than during summer, though an increase of westerly winds in the SH is found associated with enhanced convective activity in the Northern Hemisphere. The increase of the zonal wind during winter is again explained by meridional overturnings that emanate from the heating regions. Isentropic trajectories are used to show that the zonal accelerations caused by the poleward motion at upper levels are in agreement with observed values. The enhancement of convective activity is also related to a southward increase of the meridional component of the divergent wind that maximizes near the equator. However, since the latitudes of maximum southward component of the meridional divergent wind differ from those with maximum changes in the gradient of absolute vorticity, no increase of the Rossby wave source or excitation of Rossby waves due to tropical heating is found during this season.
    publisherAmerican Meteorological Society
    titleIntraseasonal Interactions between the Tropics and Extratropics in the Southern Hemisphere
    typeJournal Paper
    journal volume50
    journal issue13
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1993)050<1950:IIBTTA>2.0.CO;2
    journal fristpage1950
    journal lastpage1965
    treeJournal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian