YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Toward a Dynamical Understanding of Planetary-Scale Flow Regimes

    Source: Journal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 012::page 1792
    Author:
    Marshall, John
    ,
    Molteni, Franco
    DOI: 10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A strategy for diagnosing and interpreting flow regimes that is firmly rooted in dynamical theory is presented and applied to the study of observed and modeled planetary-scale regimes of the wintertime circulation in the Northern Hemisphere. The method assumes a nonlinear dynamical model of the atmospheric motion, and determines a subspace of the phase space of the model in which multiple quasi-stationary solutions of the equations of motion are likely to be located. The axes that generate this subspace are the vectors that possess the smallest amplitude of the time derivative computed from a linearized version of the model, using the time-mean state of the system as a basic state. These vectors are called here ?neutral vectors,? and are shown to be eigenvectors of a self-adjoint operator derived from the linearized model. As a prototype of a dynamical system with quadratic nonlinearity relevant to atmospheric dynamics, the three-variable convection model that generates the well-known Lorenz attractor is first investigated. It is shown that the presence of two unstable stationary solutions, which determine the shape of the attractor, generates a strong bimodality in the projection of the state vector of the system onto the most neutral vector, once a proper time filter is used on the data. To apply this method to the analysis of atmospheric low-frequency variability, a three-level quasigeostrophic model in spherical geometry is adopted as the dynamical model. Neutral vectors are computed using the observed mean atmospheric state in winter as a basic state; alternative basic states, in which the eddies in the time-mean state are partially or fully removed, are also used in sensitivity experiments. The spatial patterns of the leading neutral vectors are relative insensitive to variations in some model parameters, but are strongly controlled by the form of the basic state; such dependence can be understood in terms of linear planetary-wave theory. The neutral vectors of the wintertime climatology are then used to analyse a 32-winter sample of observed atmospheric fields. It is found that the time series of the projection of these fields onto one particular neutral vector has a significantly bimodal probability density function, suggesting the existence of (at least) two separate flow regimes associated with anomalies of opposite sign. The two regimes are hemispheric in extent, and are close to some of the clusters found in previous studies that made use of empirical orthogonal functions. Finally, it is shown that, if an appropriate forcing function is employed, the quasigeostrophic model is able to generate a very realistic climatology in a long nonlinear integration and, furthermore, two regimes similar to the observed ones. Again, these regimes can be identified by the presence of bimodality in the probability density function of the projections of model fields onto neutral vectors. Modeled and observed regimes have not only similar spatial patterns but also an almost identical distribution of the residence time.
    • Download: (2.305Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Toward a Dynamical Understanding of Planetary-Scale Flow Regimes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157226
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMarshall, John
    contributor authorMolteni, Franco
    date accessioned2017-06-09T14:31:33Z
    date available2017-06-09T14:31:33Z
    date copyright1993/06/01
    date issued1993
    identifier issn0022-4928
    identifier otherams-20942.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157226
    description abstractA strategy for diagnosing and interpreting flow regimes that is firmly rooted in dynamical theory is presented and applied to the study of observed and modeled planetary-scale regimes of the wintertime circulation in the Northern Hemisphere. The method assumes a nonlinear dynamical model of the atmospheric motion, and determines a subspace of the phase space of the model in which multiple quasi-stationary solutions of the equations of motion are likely to be located. The axes that generate this subspace are the vectors that possess the smallest amplitude of the time derivative computed from a linearized version of the model, using the time-mean state of the system as a basic state. These vectors are called here ?neutral vectors,? and are shown to be eigenvectors of a self-adjoint operator derived from the linearized model. As a prototype of a dynamical system with quadratic nonlinearity relevant to atmospheric dynamics, the three-variable convection model that generates the well-known Lorenz attractor is first investigated. It is shown that the presence of two unstable stationary solutions, which determine the shape of the attractor, generates a strong bimodality in the projection of the state vector of the system onto the most neutral vector, once a proper time filter is used on the data. To apply this method to the analysis of atmospheric low-frequency variability, a three-level quasigeostrophic model in spherical geometry is adopted as the dynamical model. Neutral vectors are computed using the observed mean atmospheric state in winter as a basic state; alternative basic states, in which the eddies in the time-mean state are partially or fully removed, are also used in sensitivity experiments. The spatial patterns of the leading neutral vectors are relative insensitive to variations in some model parameters, but are strongly controlled by the form of the basic state; such dependence can be understood in terms of linear planetary-wave theory. The neutral vectors of the wintertime climatology are then used to analyse a 32-winter sample of observed atmospheric fields. It is found that the time series of the projection of these fields onto one particular neutral vector has a significantly bimodal probability density function, suggesting the existence of (at least) two separate flow regimes associated with anomalies of opposite sign. The two regimes are hemispheric in extent, and are close to some of the clusters found in previous studies that made use of empirical orthogonal functions. Finally, it is shown that, if an appropriate forcing function is employed, the quasigeostrophic model is able to generate a very realistic climatology in a long nonlinear integration and, furthermore, two regimes similar to the observed ones. Again, these regimes can be identified by the presence of bimodality in the probability density function of the projections of model fields onto neutral vectors. Modeled and observed regimes have not only similar spatial patterns but also an almost identical distribution of the residence time.
    publisherAmerican Meteorological Society
    titleToward a Dynamical Understanding of Planetary-Scale Flow Regimes
    typeJournal Paper
    journal volume50
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;2
    journal fristpage1792
    journal lastpage1818
    treeJournal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian