YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of the Direct Liapunov Method to the Problem of Symmetric Stability in the Atmosphere

    Source: Journal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 006::page 822
    Author:
    Cho, H-R.
    ,
    Shepherd, T. G.
    ,
    Vladimirov, V. A.
    DOI: 10.1175/1520-0469(1993)050<0822:AOTDLM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The problem of symmetric stability is examined within the context of the direct Liapunov method. The sufficient conditions for stability derived by Fj?rtoft are shown to imply finite-amplitude, normed stability. This finite-amplitude stability theorem is then used to obtain rigorous upper bounds on the saturation amplitude of disturbances to symmetrically unstable flows.By employing a virial functional, the necessary conditions for instability implied by the stability theorem are shown to be in fact sufficient for instability. The results of Ooyama are improved upon insofar as a tight two-sided (upper and lower) estimate is obtained of the growth rate of (modal or nonmodal) symmetric instabilities.The case of moist adiabatic systems is also considered.
    • Download: (998.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of the Direct Liapunov Method to the Problem of Symmetric Stability in the Atmosphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157148
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorCho, H-R.
    contributor authorShepherd, T. G.
    contributor authorVladimirov, V. A.
    date accessioned2017-06-09T14:31:20Z
    date available2017-06-09T14:31:20Z
    date copyright1993/03/01
    date issued1993
    identifier issn0022-4928
    identifier otherams-20872.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157148
    description abstractThe problem of symmetric stability is examined within the context of the direct Liapunov method. The sufficient conditions for stability derived by Fj?rtoft are shown to imply finite-amplitude, normed stability. This finite-amplitude stability theorem is then used to obtain rigorous upper bounds on the saturation amplitude of disturbances to symmetrically unstable flows.By employing a virial functional, the necessary conditions for instability implied by the stability theorem are shown to be in fact sufficient for instability. The results of Ooyama are improved upon insofar as a tight two-sided (upper and lower) estimate is obtained of the growth rate of (modal or nonmodal) symmetric instabilities.The case of moist adiabatic systems is also considered.
    publisherAmerican Meteorological Society
    titleApplication of the Direct Liapunov Method to the Problem of Symmetric Stability in the Atmosphere
    typeJournal Paper
    journal volume50
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1993)050<0822:AOTDLM>2.0.CO;2
    journal fristpage822
    journal lastpage836
    treeJournal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian