YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Dynamics of Large-Scale Cyclogenesis over the North Pacific Ocean

    Source: Journal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 003::page 421
    Author:
    Black, Robert X.
    ,
    Dole, Randall M.
    DOI: 10.1175/1520-0469(1993)050<0421:TDOLSC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Earlier studies of persistent large-scale flow anomalies have been extended, with the aim of identifying the primary mechanisms for persistent anomaly development. In this study the focus is on wintertime cases of persistent cyclonic flow anomalies over the North Pacific. These cases are typically manifested by an abnormally intense cyclonic circulation extending over the North Pacific basin, an unusually strong and eastward-extended East Asian jet, and a well-defined Pacific-North American teleconnection pattern. We have conducted extensive diagnostic analyses in order to determine the mechanisms responsible for development. In particular, these diagnostics examine the processes influencing the time evolution of eddy potential enstrophy and potential vorticity anomalies. The cases are preceded by a buildup of anomalously high potential vorticity air at upper levels over eastern Asia. This high potential vorticity air is initially advected eastward in association with synoptic-scale cyclogenesis over the western North Pacific. As the disturbance propagates eastward into the central Pacific, it evolves toward a more zonally elongated and equivalent barotropic structure. Large-scale cyclogenesis ensues as the low becomes quasi-stationary near the Aleutians. In conjunction with large-scale development, the disturbance reacquires an upshear tilt with height. Diagnostic analyses of wave activity fluxes indicate that the primary source region for the developments is over the extratropical North Pacific. Potential enstrophy analyses show that eddy enstrophy increases result mainly from downgradient potential vorticity fluxes by the large-scale eddy. The conversions are primarily baroclinic in nature, although barotropic processes also provide positive contributions. Anomalous nonconservative and nonlinear processes are relatively small and oppose the observed enstrophy changes. Potential vorticity (PV) inversions are then performed to further clarify the dynamical mechanisms for large-scale development. A few days prior to large-scale development, anomalous upper-level northwesterly winds, associated with low-level thermal anomalies over the western North Pacific region, advect high PV air south-eastward from Asia into the western Pacific. As the PV maximum reaches the central Pacific, its associated circulation penetrates to the surface, resulting in a thermal advection pattern that produces a warm surface anomaly and associated surface cyclone downshear of the upper-level center. This is followed by strong baroclinic intensification. In several respects this behavior resembles a classical Petterssen Type B development, but occurs on a scale that is much larger than for typical synoptic-scale cyclogenesis. The results indicate that the primary mechanism for the developments is a large-scale instability of (or initial value development upon) the three-dimensional time-mean flow, and suggest that nonmodal transient growth plays a significant role during development.
    • Download: (2.041Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Dynamics of Large-Scale Cyclogenesis over the North Pacific Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157121
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBlack, Robert X.
    contributor authorDole, Randall M.
    date accessioned2017-06-09T14:31:16Z
    date available2017-06-09T14:31:16Z
    date copyright1993/02/01
    date issued1993
    identifier issn0022-4928
    identifier otherams-20848.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157121
    description abstractEarlier studies of persistent large-scale flow anomalies have been extended, with the aim of identifying the primary mechanisms for persistent anomaly development. In this study the focus is on wintertime cases of persistent cyclonic flow anomalies over the North Pacific. These cases are typically manifested by an abnormally intense cyclonic circulation extending over the North Pacific basin, an unusually strong and eastward-extended East Asian jet, and a well-defined Pacific-North American teleconnection pattern. We have conducted extensive diagnostic analyses in order to determine the mechanisms responsible for development. In particular, these diagnostics examine the processes influencing the time evolution of eddy potential enstrophy and potential vorticity anomalies. The cases are preceded by a buildup of anomalously high potential vorticity air at upper levels over eastern Asia. This high potential vorticity air is initially advected eastward in association with synoptic-scale cyclogenesis over the western North Pacific. As the disturbance propagates eastward into the central Pacific, it evolves toward a more zonally elongated and equivalent barotropic structure. Large-scale cyclogenesis ensues as the low becomes quasi-stationary near the Aleutians. In conjunction with large-scale development, the disturbance reacquires an upshear tilt with height. Diagnostic analyses of wave activity fluxes indicate that the primary source region for the developments is over the extratropical North Pacific. Potential enstrophy analyses show that eddy enstrophy increases result mainly from downgradient potential vorticity fluxes by the large-scale eddy. The conversions are primarily baroclinic in nature, although barotropic processes also provide positive contributions. Anomalous nonconservative and nonlinear processes are relatively small and oppose the observed enstrophy changes. Potential vorticity (PV) inversions are then performed to further clarify the dynamical mechanisms for large-scale development. A few days prior to large-scale development, anomalous upper-level northwesterly winds, associated with low-level thermal anomalies over the western North Pacific region, advect high PV air south-eastward from Asia into the western Pacific. As the PV maximum reaches the central Pacific, its associated circulation penetrates to the surface, resulting in a thermal advection pattern that produces a warm surface anomaly and associated surface cyclone downshear of the upper-level center. This is followed by strong baroclinic intensification. In several respects this behavior resembles a classical Petterssen Type B development, but occurs on a scale that is much larger than for typical synoptic-scale cyclogenesis. The results indicate that the primary mechanism for the developments is a large-scale instability of (or initial value development upon) the three-dimensional time-mean flow, and suggest that nonmodal transient growth plays a significant role during development.
    publisherAmerican Meteorological Society
    titleThe Dynamics of Large-Scale Cyclogenesis over the North Pacific Ocean
    typeJournal Paper
    journal volume50
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1993)050<0421:TDOLSC>2.0.CO;2
    journal fristpage421
    journal lastpage442
    treeJournal of the Atmospheric Sciences:;1993:;Volume( 050 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian