YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Initiation and Evolution of Updraft Rotation within an Incipient Supercell Thunderstorm

    Source: Journal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 021::page 1997
    Author:
    Brown, Rodger A.
    DOI: 10.1175/1520-0469(1992)049<1997:IAEOUR>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: One of the distinguishing characteristics of a supercell thunderstorm is the presence of a rotating updraft. During the past 30 years, various hypotheses have been proposed to explain the initiation and maintenance of rotation. However, attempts to verify the initiation process have been frustrated by the lack of multiple-Doppler radar measurements at the time that the first rotating updraft appears. Discussed in this paper are dual-Doppler radar measurements that successfully captured the initiation and evolution of rotation in the Agawam, Oklahoma, storm of 6 June 1979, which occurred during the storm-scale phase of the Severe Environmental Storms and Mesoscale Experiment (SESAME). The process leading to updraft rotation appears to follow that proposed in 1968 by Fujita and Grandoso, whereby a middle-altitude vorticity couplet formed on the downwind flanks of a strong nonrotating updraft, with cyclonic vertical vorticity on the right-forward flank and anticyclonic vertical vorticity on the left-forward flank. With low-altitude flow approaching the storm from the right, a new updraft developed on the rightward-propagating gust front located along the right edge of the storm beneath the cyclonic vorticity region. The growing updraft acquired cyclonic rotation at middle altitudes by entraining and stretching the ambient vertical vorticity. Subsequent right-flank updrafts in the Agawam storm appear to have developed middle-altitude rotation in the same manner. Based on observations made within the Agawam storm and its immediate environment, the conventional hypothesis that employs low-altitude vertical shear of the horizontal wind as the vorticity source did not likely play a significant role in establishing updraft rotation.
    • Download: (1.503Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Initiation and Evolution of Updraft Rotation within an Incipient Supercell Thunderstorm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157040
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBrown, Rodger A.
    date accessioned2017-06-09T14:31:04Z
    date available2017-06-09T14:31:04Z
    date copyright1992/11/01
    date issued1992
    identifier issn0022-4928
    identifier otherams-20775.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157040
    description abstractOne of the distinguishing characteristics of a supercell thunderstorm is the presence of a rotating updraft. During the past 30 years, various hypotheses have been proposed to explain the initiation and maintenance of rotation. However, attempts to verify the initiation process have been frustrated by the lack of multiple-Doppler radar measurements at the time that the first rotating updraft appears. Discussed in this paper are dual-Doppler radar measurements that successfully captured the initiation and evolution of rotation in the Agawam, Oklahoma, storm of 6 June 1979, which occurred during the storm-scale phase of the Severe Environmental Storms and Mesoscale Experiment (SESAME). The process leading to updraft rotation appears to follow that proposed in 1968 by Fujita and Grandoso, whereby a middle-altitude vorticity couplet formed on the downwind flanks of a strong nonrotating updraft, with cyclonic vertical vorticity on the right-forward flank and anticyclonic vertical vorticity on the left-forward flank. With low-altitude flow approaching the storm from the right, a new updraft developed on the rightward-propagating gust front located along the right edge of the storm beneath the cyclonic vorticity region. The growing updraft acquired cyclonic rotation at middle altitudes by entraining and stretching the ambient vertical vorticity. Subsequent right-flank updrafts in the Agawam storm appear to have developed middle-altitude rotation in the same manner. Based on observations made within the Agawam storm and its immediate environment, the conventional hypothesis that employs low-altitude vertical shear of the horizontal wind as the vorticity source did not likely play a significant role in establishing updraft rotation.
    publisherAmerican Meteorological Society
    titleInitiation and Evolution of Updraft Rotation within an Incipient Supercell Thunderstorm
    typeJournal Paper
    journal volume49
    journal issue21
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1992)049<1997:IAEOUR>2.0.CO;2
    journal fristpage1997
    journal lastpage2031
    treeJournal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian