YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wave-Mean Flow Interaction during the Life Cycles of Baroclinic Waves

    Source: Journal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 020::page 1893
    Author:
    Feldstein, Steven B.
    DOI: 10.1175/1520-0469(1992)049<1893:WMFIDT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A two-layer quasigeostrophic ?-plane channel model is used to examine the role of the wave-mean flow interaction during the life cycles of baroclinic waves. Two cases are examined: a wide and a narrow jet limit. These two limits are required to satisfy the property that their instability lead to a realistic baroclinic life cycle consisting of baroclinic growth and barotropic decay. In order to characterize the properties of the zonal-wind tendency in the two cases, scaling arguments based on a study by Andrews and McIntyre are used. This scaling procedure is then used to explain the nonlocal (local) zonal-wind tendency during the realistic baroclinic life cycle for the wide (narrow) jet limit.Several differences between the properties of the two jet limits are found. For the wide jet limit, the acceleration at the center of the jet is confined to the growth stage. This contrasts the narrow jet limit where the jet is accelerated throughout the entire life cycle. These differences depend upon the lower-layer potential vorticity fluxes, which exhibit the same timing properties as the zonal-wind tendency. In addition, for both the wide and narrow jet limits, irreversible potential vorticity mixing is shown to force nonlocal and local permanent changes to the zonal wind, respectively. A comparison is also made between the vorticity flux and potential vorticity flux to determine which is a better predictor of the zonal-wind tendency. It is shown that in the wide (narrow) jet limit, the vorticity (potential vorticity) flux does better at predicting the zonal-wind tendency. It is also argued that one can use a barotropic model to study the temporal evolution of the upper-layer flow for both the narrow and wide jet limits.Last, it is shown that the properties of the inviscid calculations are retained when thermal forcing and surface Ekman friction are included. Calculations are performed with different values for the surface Ekman friction coefficient and with the thermal forcing coefficient fixed. For the wide (narrow) jet limit, it is found that the disturbance grows to a larger (smaller) total energy as the Ekman friction coefficient is increased (decreased). This behavior for the wide jet limit is explained in terms of an enhancement of the baroclinic energy conversions that overcome the barotropic governor mechanism of James and Gray.
    • Download: (715.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wave-Mean Flow Interaction during the Life Cycles of Baroclinic Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157029
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFeldstein, Steven B.
    date accessioned2017-06-09T14:31:03Z
    date available2017-06-09T14:31:03Z
    date copyright1992/10/01
    date issued1992
    identifier issn0022-4928
    identifier otherams-20765.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157029
    description abstractA two-layer quasigeostrophic ?-plane channel model is used to examine the role of the wave-mean flow interaction during the life cycles of baroclinic waves. Two cases are examined: a wide and a narrow jet limit. These two limits are required to satisfy the property that their instability lead to a realistic baroclinic life cycle consisting of baroclinic growth and barotropic decay. In order to characterize the properties of the zonal-wind tendency in the two cases, scaling arguments based on a study by Andrews and McIntyre are used. This scaling procedure is then used to explain the nonlocal (local) zonal-wind tendency during the realistic baroclinic life cycle for the wide (narrow) jet limit.Several differences between the properties of the two jet limits are found. For the wide jet limit, the acceleration at the center of the jet is confined to the growth stage. This contrasts the narrow jet limit where the jet is accelerated throughout the entire life cycle. These differences depend upon the lower-layer potential vorticity fluxes, which exhibit the same timing properties as the zonal-wind tendency. In addition, for both the wide and narrow jet limits, irreversible potential vorticity mixing is shown to force nonlocal and local permanent changes to the zonal wind, respectively. A comparison is also made between the vorticity flux and potential vorticity flux to determine which is a better predictor of the zonal-wind tendency. It is shown that in the wide (narrow) jet limit, the vorticity (potential vorticity) flux does better at predicting the zonal-wind tendency. It is also argued that one can use a barotropic model to study the temporal evolution of the upper-layer flow for both the narrow and wide jet limits.Last, it is shown that the properties of the inviscid calculations are retained when thermal forcing and surface Ekman friction are included. Calculations are performed with different values for the surface Ekman friction coefficient and with the thermal forcing coefficient fixed. For the wide (narrow) jet limit, it is found that the disturbance grows to a larger (smaller) total energy as the Ekman friction coefficient is increased (decreased). This behavior for the wide jet limit is explained in terms of an enhancement of the baroclinic energy conversions that overcome the barotropic governor mechanism of James and Gray.
    publisherAmerican Meteorological Society
    titleWave-Mean Flow Interaction during the Life Cycles of Baroclinic Waves
    typeJournal Paper
    journal volume49
    journal issue20
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1992)049<1893:WMFIDT>2.0.CO;2
    journal fristpage1893
    journal lastpage1902
    treeJournal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian