YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Barotropic Stationary States and Persistent Anomalies in the Atmosphere

    Source: Journal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 018::page 1709
    Author:
    Anderson, Jeffrey L.
    DOI: 10.1175/1520-0469(1992)049<1709:BSSAPA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A robust algorithm, capable of finding nearly stationary solutions of the unforced barotropic vorticity equation near to observed atmospheric streamfunctions, is presented. When applied to observed persistent anomaly patterns, the nearly stationary states (NSSs) produced by the algorithm usually have a distinctive appearance. NSSs produced for observed blocks tend to have even stronger blocks, and NSSs for intense jet anomaly patterns have intense jets. When applied to observed patterns that are not associated with persistent anomalies, the algorithm produces low-amplitude relatively zonal NSSs. The blocking and intense jet anomaly NSSs bear a striking resemblance to previously derived analytic stationary solutions of the vorticity equation. In particular, NSS blocking states are similar to certain types of modons.The algorithm is applied to a number of modified observed flows to better document what features of an observed pattern determine the nature of the resulting NSS. The short-wave components of an observed pattern need not be present in order for the algorithm to find interesting zonally varying NSSs. However, short waves play an essential part in the resulting NSSs by balancing the long-wave time tendencies. All the NSSs discovered are unstable to the introduction of small perturbations in the barotropic vorticity equation. Despite this instability, the NSSs still persist for many days when integrated in time. The existence of these persistent NSSs may play a significant role in the appearance and subsequent longevity of persistent anomaly patterns in the atmosphere.
    • Download: (1.263Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Barotropic Stationary States and Persistent Anomalies in the Atmosphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157016
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorAnderson, Jeffrey L.
    date accessioned2017-06-09T14:31:01Z
    date available2017-06-09T14:31:01Z
    date copyright1992/09/01
    date issued1992
    identifier issn0022-4928
    identifier otherams-20753.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157016
    description abstractA robust algorithm, capable of finding nearly stationary solutions of the unforced barotropic vorticity equation near to observed atmospheric streamfunctions, is presented. When applied to observed persistent anomaly patterns, the nearly stationary states (NSSs) produced by the algorithm usually have a distinctive appearance. NSSs produced for observed blocks tend to have even stronger blocks, and NSSs for intense jet anomaly patterns have intense jets. When applied to observed patterns that are not associated with persistent anomalies, the algorithm produces low-amplitude relatively zonal NSSs. The blocking and intense jet anomaly NSSs bear a striking resemblance to previously derived analytic stationary solutions of the vorticity equation. In particular, NSS blocking states are similar to certain types of modons.The algorithm is applied to a number of modified observed flows to better document what features of an observed pattern determine the nature of the resulting NSS. The short-wave components of an observed pattern need not be present in order for the algorithm to find interesting zonally varying NSSs. However, short waves play an essential part in the resulting NSSs by balancing the long-wave time tendencies. All the NSSs discovered are unstable to the introduction of small perturbations in the barotropic vorticity equation. Despite this instability, the NSSs still persist for many days when integrated in time. The existence of these persistent NSSs may play a significant role in the appearance and subsequent longevity of persistent anomaly patterns in the atmosphere.
    publisherAmerican Meteorological Society
    titleBarotropic Stationary States and Persistent Anomalies in the Atmosphere
    typeJournal Paper
    journal volume49
    journal issue18
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1992)049<1709:BSSAPA>2.0.CO;2
    journal fristpage1709
    journal lastpage1722
    treeJournal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian