YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Formation and Diurnal Variation of the Dryline

    Source: Journal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 017::page 1606
    Author:
    Sun, Wen-Yih
    ,
    Wu, Ching-Chi
    DOI: 10.1175/1520-0469(1992)049<1606:FADVOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The formation and diurnal evolution of the dryline during fair weather have been investigated through the use of a two-dimensional mesoscale model that includes condensation/evaporation, budget equations of surface energy and moisture field, as well as turbulence and radiation parameterizations.A moderately strong, vertical wind shear was introduced on a sloping terrain, where the soil is very dry on the west side but moist on the east. Initially, a weak easterly geostrophic wind exists to the east but a weak westerly geostrophic wind to the west of the dryline. During daytime, deepening of the mixed layer due to vertical mixing, especially on the west side, forces the dryline to advance eastward. The westerly wind on the west side is maintained by downward transport of westerly momentum due to strong vertical mixing; the easterly wind on the east side is strengthened due to the inland sea-breeze circulation. Therefore, the resulting low-level convergence sustains a strong moisture gradient along the dryline.During the night, convection near the ground ceases, and a rapid surface cooling to the west of the dryline changes the pressure gradient force near the surface, which is able to maintain a weak westerly wind there. In contrast, a strong easterly wind persists on the east side and forces the dryline to retrograde until sunrise. The strong moisture gradient was also maintained by the low-level convergence.Sensitivity tests show that the most important factors in sustaining a strong moisture gradient along the dryline are the low-level wind shear, the sloping terrain, and the horizontal soil moisture gradient, in that order. Under favorable conditions, a very weak moisture gradient zone can develop into an intensive dryline within 36 hours.
    • Download: (1.061Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Formation and Diurnal Variation of the Dryline

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157008
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSun, Wen-Yih
    contributor authorWu, Ching-Chi
    date accessioned2017-06-09T14:30:59Z
    date available2017-06-09T14:30:59Z
    date copyright1992/09/01
    date issued1992
    identifier issn0022-4928
    identifier otherams-20746.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157008
    description abstractThe formation and diurnal evolution of the dryline during fair weather have been investigated through the use of a two-dimensional mesoscale model that includes condensation/evaporation, budget equations of surface energy and moisture field, as well as turbulence and radiation parameterizations.A moderately strong, vertical wind shear was introduced on a sloping terrain, where the soil is very dry on the west side but moist on the east. Initially, a weak easterly geostrophic wind exists to the east but a weak westerly geostrophic wind to the west of the dryline. During daytime, deepening of the mixed layer due to vertical mixing, especially on the west side, forces the dryline to advance eastward. The westerly wind on the west side is maintained by downward transport of westerly momentum due to strong vertical mixing; the easterly wind on the east side is strengthened due to the inland sea-breeze circulation. Therefore, the resulting low-level convergence sustains a strong moisture gradient along the dryline.During the night, convection near the ground ceases, and a rapid surface cooling to the west of the dryline changes the pressure gradient force near the surface, which is able to maintain a weak westerly wind there. In contrast, a strong easterly wind persists on the east side and forces the dryline to retrograde until sunrise. The strong moisture gradient was also maintained by the low-level convergence.Sensitivity tests show that the most important factors in sustaining a strong moisture gradient along the dryline are the low-level wind shear, the sloping terrain, and the horizontal soil moisture gradient, in that order. Under favorable conditions, a very weak moisture gradient zone can develop into an intensive dryline within 36 hours.
    publisherAmerican Meteorological Society
    titleFormation and Diurnal Variation of the Dryline
    typeJournal Paper
    journal volume49
    journal issue17
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1992)049<1606:FADVOT>2.0.CO;2
    journal fristpage1606
    journal lastpage1619
    treeJournal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian