YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanisms and Parameterizations of Geostrophic Adjustment and a Variational Approach to Balanced Flow

    Source: Journal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 013::page 1144
    Author:
    Vallis, Geoffrey K.
    DOI: 10.1175/1520-0469(1992)049<1144:MAPOGA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Geostrophic balance is shown to be the minimum energy state, for a given linear potential vorticity field, for small deviations of the height field around a resting state, in the shallow-water equations. This includes (but is not limited to) the linearized shallow-water equations. Quasigeostrophic motion is evolution on the slow manifold defined by advection of linear potential vorticity by the velocity field that minimizes that energy. Other linear and nonlinear arguments suggest that geostrophic adjustment is a process whereby the energy of a flow is minimized consistent with the maintenance of the potential vorticity field. A variational calculation that minimizes energy for a given potential vorticity field leads to a balance relationship that for the unapproximated shallow-water equations is similar but not identical to geostrophic balance. Preliminary numerical evidence, involving the inversion of potential vorticity for a simple model, indicates that this balance is a somewhat better approximation to the primitive equations than geostrophy. It is also shown how the process of geostrophic adjustment may be significantly accelerated, or parameterized, in the primitive equations by the addition of certain terms to the equations of motion. Application of the parameterization to an unbalanced state in a primitive equation model is very effective in achieving a balanced state and in continuously filtering gravity waves. It is more accurate and less sensitive to tunable parameters than pure divergence damping, and may also be a useful and much simpler alternative to nonlinear normal-mode schemes whenever those may be inappropriate.
    • Download: (1.043Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanisms and Parameterizations of Geostrophic Adjustment and a Variational Approach to Balanced Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156971
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorVallis, Geoffrey K.
    date accessioned2017-06-09T14:30:54Z
    date available2017-06-09T14:30:54Z
    date copyright1992/07/01
    date issued1992
    identifier issn0022-4928
    identifier otherams-20712.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156971
    description abstractGeostrophic balance is shown to be the minimum energy state, for a given linear potential vorticity field, for small deviations of the height field around a resting state, in the shallow-water equations. This includes (but is not limited to) the linearized shallow-water equations. Quasigeostrophic motion is evolution on the slow manifold defined by advection of linear potential vorticity by the velocity field that minimizes that energy. Other linear and nonlinear arguments suggest that geostrophic adjustment is a process whereby the energy of a flow is minimized consistent with the maintenance of the potential vorticity field. A variational calculation that minimizes energy for a given potential vorticity field leads to a balance relationship that for the unapproximated shallow-water equations is similar but not identical to geostrophic balance. Preliminary numerical evidence, involving the inversion of potential vorticity for a simple model, indicates that this balance is a somewhat better approximation to the primitive equations than geostrophy. It is also shown how the process of geostrophic adjustment may be significantly accelerated, or parameterized, in the primitive equations by the addition of certain terms to the equations of motion. Application of the parameterization to an unbalanced state in a primitive equation model is very effective in achieving a balanced state and in continuously filtering gravity waves. It is more accurate and less sensitive to tunable parameters than pure divergence damping, and may also be a useful and much simpler alternative to nonlinear normal-mode schemes whenever those may be inappropriate.
    publisherAmerican Meteorological Society
    titleMechanisms and Parameterizations of Geostrophic Adjustment and a Variational Approach to Balanced Flow
    typeJournal Paper
    journal volume49
    journal issue13
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1992)049<1144:MAPOGA>2.0.CO;2
    journal fristpage1144
    journal lastpage1160
    treeJournal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian