YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Diagnosis of Mechanical Dissipation in the Atmosphere from Large-Scale Balance Requirements

    Source: Journal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 007::page 608
    Author:
    Klinker, Ernst
    ,
    Sardeshmukh, Prashant D.
    DOI: 10.1175/1520-0469(1992)049<0608:TDOMDI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The momentum budget for January 1987 is evaluated with global observations analyzed at the European Centre for Medium-Range Weather Forecasts (ECMWF). The dissipation term is diagnosed from the budget as a balance requirement, that is, as that required to balance the sum of the advection, Coriolis, pressure gradient, and local tendency terms. This is then compared with the parameterized subgrid-scale effects in the ECMWF model's momentum equation, with a view of identifying possible errors in those parameterizations. The balance requirement does not support the high parameterized values of orographically induced gravity-wave drag in the lower stratosphere. A deeper analysis also does not suggest a major role for turbulent vertical transports above the boundary layer. On the other hand, our budget does indicate that more effort be spent on a better representation of the potential enstrophy cascade associated with Rossby wave breaking in the upper troposphere. These statements are qualified by the errors in the balance requirement itself. The extent to which this is a problem is discussed. A distinctive feature of these calculations is their internal consistency., that is, all the terms in the budget are evaluated as in the version of the ECMWF model used for assimilating the observations. This offers several advantages, not the least of which is that it makes our budget residuals identical to the systematic initial tendency errors of the operational weather forecasts, thus facilitating their computation and routine monitoring. As such, our calculations explain a large fraction of the systematic short-range forecast errors and, because of their local character, provide clues as to the possible sources of those errors. Experiments with and without gravity-wave drag are described to illustrate its large contribution during this period to the southerly wind error of the operational weather forecasts at 70 mb over western North America.
    • Download: (1.828Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Diagnosis of Mechanical Dissipation in the Atmosphere from Large-Scale Balance Requirements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156929
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKlinker, Ernst
    contributor authorSardeshmukh, Prashant D.
    date accessioned2017-06-09T14:30:45Z
    date available2017-06-09T14:30:45Z
    date copyright1992/04/01
    date issued1992
    identifier issn0022-4928
    identifier otherams-20675.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156929
    description abstractThe momentum budget for January 1987 is evaluated with global observations analyzed at the European Centre for Medium-Range Weather Forecasts (ECMWF). The dissipation term is diagnosed from the budget as a balance requirement, that is, as that required to balance the sum of the advection, Coriolis, pressure gradient, and local tendency terms. This is then compared with the parameterized subgrid-scale effects in the ECMWF model's momentum equation, with a view of identifying possible errors in those parameterizations. The balance requirement does not support the high parameterized values of orographically induced gravity-wave drag in the lower stratosphere. A deeper analysis also does not suggest a major role for turbulent vertical transports above the boundary layer. On the other hand, our budget does indicate that more effort be spent on a better representation of the potential enstrophy cascade associated with Rossby wave breaking in the upper troposphere. These statements are qualified by the errors in the balance requirement itself. The extent to which this is a problem is discussed. A distinctive feature of these calculations is their internal consistency., that is, all the terms in the budget are evaluated as in the version of the ECMWF model used for assimilating the observations. This offers several advantages, not the least of which is that it makes our budget residuals identical to the systematic initial tendency errors of the operational weather forecasts, thus facilitating their computation and routine monitoring. As such, our calculations explain a large fraction of the systematic short-range forecast errors and, because of their local character, provide clues as to the possible sources of those errors. Experiments with and without gravity-wave drag are described to illustrate its large contribution during this period to the southerly wind error of the operational weather forecasts at 70 mb over western North America.
    publisherAmerican Meteorological Society
    titleThe Diagnosis of Mechanical Dissipation in the Atmosphere from Large-Scale Balance Requirements
    typeJournal Paper
    journal volume49
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1992)049<0608:TDOMDI>2.0.CO;2
    journal fristpage608
    journal lastpage627
    treeJournal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian