YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Three-Dimensional Numerical Investigation of a Carolina Coastal Front and the Gulf Stream Rainband

    Source: Journal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 007::page 560
    Author:
    Huang, Ching-Yuang
    ,
    Raman, Sethu
    DOI: 10.1175/1520-0469(1992)049<0560:ATDNIO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A three-dimensional mesoscale planetary boundary layer (PBL) numerical model is used to investigate mesoscale circulations over the Carolina coastal and Gulf Stream baroclinic zones. Idealized ambient onshore and offshore flows are investigated, which represent the synoptic conditions during the Intensive Observation Period-2 (IOP-2) of the 1986 Genesis of Atlantic Lows Experiment (GALE). For the easterly onshore flow, a confluence zone appears west of the Gulf Stream in response to the effect of the oceanic baroclinicity. The confluence zone is nearly parallel to the coastline and the SST isotherms, with northeasterly (southwesterly) flow to the west (east). A shallow coastal front forms below 2 km as the cyclonic shear of the ageostrophic flow becomes strong. Quasi-stationary rainbands are produced by cumulus convection along the coastal front. The northern part of the front and the rainbands later encroach inland as the cold air intensity over ground weakens due to onshore warm air advection. The modeled coastal circulation is in agreement with the observations, suggesting that differential boundary-layer modification may be the main mechanism for the formation of the coastal front. The existence of an onshore ambient flow appears to be a necessary condition for the presence of the Coastal front. For the northerly offshore ambient flow, the rainband therefore appears along the eastern edge of the Gulf Stream, which then moves slowly downstream in response to the generated atmospheric baroclinicity. For both flows, the development of the rainbands is sensitive to variations in eddy Prandtl number, and their growth rate can be explained in terms of conditional symmetric instability.
    • Download: (1.918Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Three-Dimensional Numerical Investigation of a Carolina Coastal Front and the Gulf Stream Rainband

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156927
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHuang, Ching-Yuang
    contributor authorRaman, Sethu
    date accessioned2017-06-09T14:30:45Z
    date available2017-06-09T14:30:45Z
    date copyright1992/04/01
    date issued1992
    identifier issn0022-4928
    identifier otherams-20673.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156927
    description abstractA three-dimensional mesoscale planetary boundary layer (PBL) numerical model is used to investigate mesoscale circulations over the Carolina coastal and Gulf Stream baroclinic zones. Idealized ambient onshore and offshore flows are investigated, which represent the synoptic conditions during the Intensive Observation Period-2 (IOP-2) of the 1986 Genesis of Atlantic Lows Experiment (GALE). For the easterly onshore flow, a confluence zone appears west of the Gulf Stream in response to the effect of the oceanic baroclinicity. The confluence zone is nearly parallel to the coastline and the SST isotherms, with northeasterly (southwesterly) flow to the west (east). A shallow coastal front forms below 2 km as the cyclonic shear of the ageostrophic flow becomes strong. Quasi-stationary rainbands are produced by cumulus convection along the coastal front. The northern part of the front and the rainbands later encroach inland as the cold air intensity over ground weakens due to onshore warm air advection. The modeled coastal circulation is in agreement with the observations, suggesting that differential boundary-layer modification may be the main mechanism for the formation of the coastal front. The existence of an onshore ambient flow appears to be a necessary condition for the presence of the Coastal front. For the northerly offshore ambient flow, the rainband therefore appears along the eastern edge of the Gulf Stream, which then moves slowly downstream in response to the generated atmospheric baroclinicity. For both flows, the development of the rainbands is sensitive to variations in eddy Prandtl number, and their growth rate can be explained in terms of conditional symmetric instability.
    publisherAmerican Meteorological Society
    titleA Three-Dimensional Numerical Investigation of a Carolina Coastal Front and the Gulf Stream Rainband
    typeJournal Paper
    journal volume49
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1992)049<0560:ATDNIO>2.0.CO;2
    journal fristpage560
    journal lastpage584
    treeJournal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian