YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lake Aggregate Mesoscale Disturbances. Part I: Linear Analysis

    Source: Journal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 001::page 80
    Author:
    Sousounis, Peter J.
    ,
    Shirer, Hampton N.
    DOI: 10.1175/1520-0469(1992)049<0080:LAMDPI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The steady boundary-layer responses that occur over the Great Lakes region during wintertime cold air outbreaks are examined using a two-dimensional, linear, analytic model. The planetary boundary layer (PBL) is modeled as an idealized, constantly stratified, viscous, rotating Boussinesq fluid that moves uniformly between two horizontally infinite, rigid, stress-free plates. The heat from the lakes is parameterized in terms of a specified diabatic forcing function. Solution of the governing differential equation yields an integral expression for the vertical motion of the general response. Further assessment of the response is gained by examining closed-form analytic solutions to several limiting cases. Four response types are identified that depend upon the values of the Froude number Fr, the mechanical Ekman number Ex, the thermal Ekman number Ex, and the eddy Prandtl number Pr. Four different flow regimes are found. When 0 ≤ Fr < 1 and Pr ≥ 1, there is a purely exponentially damped response that exists over and on both sides of the heating. A flow characterized approximately by 1 ≤ Fr2 < 1 + Er2 + Ex and Pr ≥ 1 yields a purely exponentially damped response that exists only over and downstream of the heating, while a flow characterized approximately by Fr2 > 1 + Er2 + Ex2 and Pr ≥ 1 yields a mixed oscillating-exponentially damped response that exists only over and downstream of the heating. When Pr < 1 and Fr > 1, either of the previous two response types can occur, while when 0 < Fr < 1, a fourth type of response can occur that is mixed oscillating-exponentially damped and exists over and on both sides of the heating. The model is used to demonstrate the effects that rotation, stability, mean flow speed, and mechanical and thermal dissipation have on the PBL responses that occur over the Great Lakes during wintertime cold air outbreaks. The simulation of heating by the lakes of strong flow within a moderately cold, shallow PBL produces a model response with ascent and implied clouds and precipitation extending well downstream of the lakes, as are typically observed soon after such a response develops. The simulation of heating by the lakes of weak flow within a very cold, deep PBL produces a model response with ascent and implied clouds and precipitation that are collocated with the lakes, as are typically observed just before such a response decays.
    • Download: (1.700Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lake Aggregate Mesoscale Disturbances. Part I: Linear Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156893
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSousounis, Peter J.
    contributor authorShirer, Hampton N.
    date accessioned2017-06-09T14:30:40Z
    date available2017-06-09T14:30:40Z
    date copyright1992/01/01
    date issued1992
    identifier issn0022-4928
    identifier otherams-20642.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156893
    description abstractThe steady boundary-layer responses that occur over the Great Lakes region during wintertime cold air outbreaks are examined using a two-dimensional, linear, analytic model. The planetary boundary layer (PBL) is modeled as an idealized, constantly stratified, viscous, rotating Boussinesq fluid that moves uniformly between two horizontally infinite, rigid, stress-free plates. The heat from the lakes is parameterized in terms of a specified diabatic forcing function. Solution of the governing differential equation yields an integral expression for the vertical motion of the general response. Further assessment of the response is gained by examining closed-form analytic solutions to several limiting cases. Four response types are identified that depend upon the values of the Froude number Fr, the mechanical Ekman number Ex, the thermal Ekman number Ex, and the eddy Prandtl number Pr. Four different flow regimes are found. When 0 ≤ Fr < 1 and Pr ≥ 1, there is a purely exponentially damped response that exists over and on both sides of the heating. A flow characterized approximately by 1 ≤ Fr2 < 1 + Er2 + Ex and Pr ≥ 1 yields a purely exponentially damped response that exists only over and downstream of the heating, while a flow characterized approximately by Fr2 > 1 + Er2 + Ex2 and Pr ≥ 1 yields a mixed oscillating-exponentially damped response that exists only over and downstream of the heating. When Pr < 1 and Fr > 1, either of the previous two response types can occur, while when 0 < Fr < 1, a fourth type of response can occur that is mixed oscillating-exponentially damped and exists over and on both sides of the heating. The model is used to demonstrate the effects that rotation, stability, mean flow speed, and mechanical and thermal dissipation have on the PBL responses that occur over the Great Lakes during wintertime cold air outbreaks. The simulation of heating by the lakes of strong flow within a moderately cold, shallow PBL produces a model response with ascent and implied clouds and precipitation extending well downstream of the lakes, as are typically observed soon after such a response develops. The simulation of heating by the lakes of weak flow within a very cold, deep PBL produces a model response with ascent and implied clouds and precipitation that are collocated with the lakes, as are typically observed just before such a response decays.
    publisherAmerican Meteorological Society
    titleLake Aggregate Mesoscale Disturbances. Part I: Linear Analysis
    typeJournal Paper
    journal volume49
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1992)049<0080:LAMDPI>2.0.CO;2
    journal fristpage80
    journal lastpage96
    treeJournal of the Atmospheric Sciences:;1992:;Volume( 049 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian