YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aerodynamic Effects on Wind Turbulence Measurements with Research Aircraft

    Source: Journal of Atmospheric and Oceanic Technology:;2002:;volume( 019 ):;issue: 010::page 1567
    Author:
    Kalogiros, John A.
    ,
    Wang, Qing
    DOI: 10.1175/1520-0426(2002)019<1567:AEOWTM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Flow distortion is a major issue in the measurement of wind turbulence with gust probes mounted on a nose boom, at the radome, or under the wing of research aircraft. In this paper, the effects both of the propellers of a turboprop aircraft and of the aircraft vortex system on the pressure and wind velocity measurements near the nose of the aircraft are examined. It is shown that, for a turboprop aircraft, the sensors mounted near the nose are affected directly (slipstream) or indirectly (lift increase) by the propellers. The propeller effects are more significant for pressure sensors located ahead of the propellers on the fuselage and are less significant for the small local flow angles measured at the nose of the aircraft. The first case is clearly realized during in-flight calibration maneuvers performed by a turboprop aircraft. A major flow distortion, which seriously affects the vertical wind velocity measurements near the nose of an aircraft, is the upwash induced mainly by the wing-bound vortex. Also, low energy of the vertical wind component in the inertial subrange for scales larger than the fuselage diameter is usually observed in aircraft measurements. This is shown to be the result of not taking into account the decrease of the upwash correction with eddy frequency (or no need for such a correction in the inertial subrange) caused by the aerodynamic delay and the response of the wing vortex to turbulence. The level of energy in the inertial subrange of the vertical wind component is significant because it is commonly used for the estimation of the dissipation rate of turbulence kinetic energy. A method to estimate this frequency variable correction and correct the spectra or the time series of the estimated vertical wind component is described. Data from low-level flight legs with a Twin Otter aircraft show that this correction may result in about a 20% correction of the variance of the vertical wind component and a 5% correction of the vertical turbulent fluxes.
    • Download: (204.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aerodynamic Effects on Wind Turbulence Measurements with Research Aircraft

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156857
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorKalogiros, John A.
    contributor authorWang, Qing
    date accessioned2017-06-09T14:30:34Z
    date available2017-06-09T14:30:34Z
    date copyright2002/10/01
    date issued2002
    identifier issn0739-0572
    identifier otherams-2061.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156857
    description abstractFlow distortion is a major issue in the measurement of wind turbulence with gust probes mounted on a nose boom, at the radome, or under the wing of research aircraft. In this paper, the effects both of the propellers of a turboprop aircraft and of the aircraft vortex system on the pressure and wind velocity measurements near the nose of the aircraft are examined. It is shown that, for a turboprop aircraft, the sensors mounted near the nose are affected directly (slipstream) or indirectly (lift increase) by the propellers. The propeller effects are more significant for pressure sensors located ahead of the propellers on the fuselage and are less significant for the small local flow angles measured at the nose of the aircraft. The first case is clearly realized during in-flight calibration maneuvers performed by a turboprop aircraft. A major flow distortion, which seriously affects the vertical wind velocity measurements near the nose of an aircraft, is the upwash induced mainly by the wing-bound vortex. Also, low energy of the vertical wind component in the inertial subrange for scales larger than the fuselage diameter is usually observed in aircraft measurements. This is shown to be the result of not taking into account the decrease of the upwash correction with eddy frequency (or no need for such a correction in the inertial subrange) caused by the aerodynamic delay and the response of the wing vortex to turbulence. The level of energy in the inertial subrange of the vertical wind component is significant because it is commonly used for the estimation of the dissipation rate of turbulence kinetic energy. A method to estimate this frequency variable correction and correct the spectra or the time series of the estimated vertical wind component is described. Data from low-level flight legs with a Twin Otter aircraft show that this correction may result in about a 20% correction of the variance of the vertical wind component and a 5% correction of the vertical turbulent fluxes.
    publisherAmerican Meteorological Society
    titleAerodynamic Effects on Wind Turbulence Measurements with Research Aircraft
    typeJournal Paper
    journal volume19
    journal issue10
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2002)019<1567:AEOWTM>2.0.CO;2
    journal fristpage1567
    journal lastpage1576
    treeJournal of Atmospheric and Oceanic Technology:;2002:;volume( 019 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian