YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Symbiotic Relation between Planetary and Synoptic-Scale Waves

    Source: Journal of the Atmospheric Sciences:;1989:;Volume( 047 ):;issue: 024::page 2953
    Author:
    Cai, Ming
    ,
    Mak, Mankin
    DOI: 10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: It is hypothesized that the low-frequency planetary scale waves and the high-frequency cyclone-scale waves in an equilibrated state of the atmosphere are symbiotically dependent upon one another. This is demonstrated with an analysis of a dissipative atmospheric model driven by a zonally symmetric forcing. Under a geophysically relevant parameter condition, the synoptic scale waves in the equilibrated state of this system intermittently extract a sufficient amount of energy from the modified instantaneous zonal flow to compensate not only for their own dissipative loss of energy but also for a net supply of energy to the planetary scale waves through the upscale energy cascade process. The planetary scale waves gain this energy in the barotropic form. The planetary scale waves, in turn, create localized strong baroclinic regions whereby the synoptic scale waves may preferentially intensify downstream of the model planetary jet streams. Such cyclone scale eddies collectively give rise to two model stormtracks that have a coherent statistical relation with the zonally traveling planetary scale waves. The zonal propagation of the planetary waves is slowed down due to interaction with the synoptic scale waves. These findings are deduced from a multifacet diagnosis of a long record of the model evolution. First, some salient statistical characteristics and the energetics of the equilibrated flow are analysed. Then, the dominant planetary scale wave in the equilibrated state is used as a reference to construct a phase-shifted composite flow and a corresponding record of the synoptic scale anomaly flow. Using a complete local energetics analysis of the synoptic scale anomalies, we delineate how the planetary scale jet streams statistically organize the synoptic scale eddies downstream of the jet cores. The phase-shifted composite flow is finally analysed for its linear instability properties. Evidence is shown to relate the nonlinear synoptic scale anomaly flow to an unstable local normal mode with similar structural and energetic properties.
    • Download: (1.381Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Symbiotic Relation between Planetary and Synoptic-Scale Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156669
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorCai, Ming
    contributor authorMak, Mankin
    date accessioned2017-06-09T14:30:04Z
    date available2017-06-09T14:30:04Z
    date copyright1990/12/01
    date issued1989
    identifier issn0022-4928
    identifier otherams-20440.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156669
    description abstractIt is hypothesized that the low-frequency planetary scale waves and the high-frequency cyclone-scale waves in an equilibrated state of the atmosphere are symbiotically dependent upon one another. This is demonstrated with an analysis of a dissipative atmospheric model driven by a zonally symmetric forcing. Under a geophysically relevant parameter condition, the synoptic scale waves in the equilibrated state of this system intermittently extract a sufficient amount of energy from the modified instantaneous zonal flow to compensate not only for their own dissipative loss of energy but also for a net supply of energy to the planetary scale waves through the upscale energy cascade process. The planetary scale waves gain this energy in the barotropic form. The planetary scale waves, in turn, create localized strong baroclinic regions whereby the synoptic scale waves may preferentially intensify downstream of the model planetary jet streams. Such cyclone scale eddies collectively give rise to two model stormtracks that have a coherent statistical relation with the zonally traveling planetary scale waves. The zonal propagation of the planetary waves is slowed down due to interaction with the synoptic scale waves. These findings are deduced from a multifacet diagnosis of a long record of the model evolution. First, some salient statistical characteristics and the energetics of the equilibrated flow are analysed. Then, the dominant planetary scale wave in the equilibrated state is used as a reference to construct a phase-shifted composite flow and a corresponding record of the synoptic scale anomaly flow. Using a complete local energetics analysis of the synoptic scale anomalies, we delineate how the planetary scale jet streams statistically organize the synoptic scale eddies downstream of the jet cores. The phase-shifted composite flow is finally analysed for its linear instability properties. Evidence is shown to relate the nonlinear synoptic scale anomaly flow to an unstable local normal mode with similar structural and energetic properties.
    publisherAmerican Meteorological Society
    titleSymbiotic Relation between Planetary and Synoptic-Scale Waves
    typeJournal Paper
    journal volume47
    journal issue24
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2
    journal fristpage2953
    journal lastpage2968
    treeJournal of the Atmospheric Sciences:;1989:;Volume( 047 ):;issue: 024
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian