YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    FES99: A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information

    Source: Journal of Atmospheric and Oceanic Technology:;2002:;volume( 019 ):;issue: 009::page 1345
    Author:
    Lefèvre, F.
    ,
    Lyard, F. H.
    ,
    Le Provost, C.
    ,
    Schrama, E. J. O.
    DOI: 10.1175/1520-0426(2002)019<1345:FAGTFE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: An improved version of the global hydrodynamic tide solutions [finite element solutions (FESs) FES94, FES95.2.1, and FES98] has been developed, implemented, and validated. The new model is based on the resolution of the tidal barotropic equations on a global finite element grid without any open boundary condition, which leads to solutions independent of in situ data (no open boundary conditions and no assimilation). The accuracy of these ?free? solutions is improved by assimilating tide gauge and TOPEX/Poseidon (T/P) altimeter information through a representer assimilation method. This leads to the FES99 version of this model. For the eight main constituents of the tidal spectrum (M2, S2, N2, K2, 2N2, K1, O1, and Q1), about 700 tide gauges and 687 T/P altimetric measurements are assimilated. An original algorithm is developed to calculate the tidal harmonic constituents at crossover points of the T/P altimeter database. Additional work is performed for the S2 wave by reconsidering the inverse barometer correction. To complete the spectrum, 19 minor constituents have been added by admittance. The accuracy of FES99 is evaluated against the former FESs. First, it is compared to two tide gauge datasets: ST95 (95 open-ocean measurements) and ST739 (739 coastal measurements). For ST95, the root-sum square of the differences between observations and solutions is reduced from 2.8 (FES95.2.1) to 2.4 cm (FES99), a gain of 17% in overall accuracy. Second, the variance of the sea surface variability is calculated and compared for FES95.2.1, FES98, and FES99 at the T/P and the European Remote Sensing Satellite (ERS-2) crossover data points. FES99 performed best, with a residual standard deviation for the independent ERS-2 dataset of 13.5 cm (15.2 cm for FES95.2.1). Third, tidal predictions are implemented for the FESs to provide along-track estimates of the sea surface variability for T/P and ERS-2. Compared to ERS-2, FES99 residuals are 11.8 cm (12.4 cm for FES95.2.1). All the accuracy tests show that FES99 is a significant improvement compared to former FESs both in the deep ocean and along coasts.
    • Download: (979.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      FES99: A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156668
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorLefèvre, F.
    contributor authorLyard, F. H.
    contributor authorLe Provost, C.
    contributor authorSchrama, E. J. O.
    date accessioned2017-06-09T14:30:04Z
    date available2017-06-09T14:30:04Z
    date copyright2002/09/01
    date issued2002
    identifier issn0739-0572
    identifier otherams-2044.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156668
    description abstractAn improved version of the global hydrodynamic tide solutions [finite element solutions (FESs) FES94, FES95.2.1, and FES98] has been developed, implemented, and validated. The new model is based on the resolution of the tidal barotropic equations on a global finite element grid without any open boundary condition, which leads to solutions independent of in situ data (no open boundary conditions and no assimilation). The accuracy of these ?free? solutions is improved by assimilating tide gauge and TOPEX/Poseidon (T/P) altimeter information through a representer assimilation method. This leads to the FES99 version of this model. For the eight main constituents of the tidal spectrum (M2, S2, N2, K2, 2N2, K1, O1, and Q1), about 700 tide gauges and 687 T/P altimetric measurements are assimilated. An original algorithm is developed to calculate the tidal harmonic constituents at crossover points of the T/P altimeter database. Additional work is performed for the S2 wave by reconsidering the inverse barometer correction. To complete the spectrum, 19 minor constituents have been added by admittance. The accuracy of FES99 is evaluated against the former FESs. First, it is compared to two tide gauge datasets: ST95 (95 open-ocean measurements) and ST739 (739 coastal measurements). For ST95, the root-sum square of the differences between observations and solutions is reduced from 2.8 (FES95.2.1) to 2.4 cm (FES99), a gain of 17% in overall accuracy. Second, the variance of the sea surface variability is calculated and compared for FES95.2.1, FES98, and FES99 at the T/P and the European Remote Sensing Satellite (ERS-2) crossover data points. FES99 performed best, with a residual standard deviation for the independent ERS-2 dataset of 13.5 cm (15.2 cm for FES95.2.1). Third, tidal predictions are implemented for the FESs to provide along-track estimates of the sea surface variability for T/P and ERS-2. Compared to ERS-2, FES99 residuals are 11.8 cm (12.4 cm for FES95.2.1). All the accuracy tests show that FES99 is a significant improvement compared to former FESs both in the deep ocean and along coasts.
    publisherAmerican Meteorological Society
    titleFES99: A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information
    typeJournal Paper
    journal volume19
    journal issue9
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2002)019<1345:FAGTFE>2.0.CO;2
    journal fristpage1345
    journal lastpage1356
    treeJournal of Atmospheric and Oceanic Technology:;2002:;volume( 019 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian