YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    External Influences on Hurricane Intensity. Part II: Vertical Structure and Response of the Hurricane Vortex

    Source: Journal of the Atmospheric Sciences:;1989:;Volume( 047 ):;issue: 015::page 1902
    Author:
    Molinari, John
    ,
    Vollaro, David
    DOI: 10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The vertical structure of the interaction of Hurricane Elena (1985) with a baroclinic wave was evaluated using analyses from the European Centre for Medium Range Weather Forecasting. During the period of interaction, azimuthal eddies produced a localized flux convergence of cyclonic angular momentum in the upper troposphere which shifted to progressively smaller radii prior to major secondary deepening of the storm. These momentum fluxes decayed above and below the outflow layer. Eddy heat fluxes showed maximum cooling in the middle and upper troposphere and warming in the lower stratosphere, reflecting the temperature structure of the baroclinic wave as it moved into the hurricane volume. The response of the hurricane vortex to the fluxes of heat and angular momentum was determined by solution of Eliassen's balanced vortex equation. The balanced solutions showed a band of upward motion, with deep inflow and narrow outflow, which shifted inward from the 500 km radius to the hurricane core in the 24 hours prior to the secondary deepening. The position and timing of this feature corresponded to the contracting outflow maximum found in Part I. Eddy heat fluxes contributed to the induced circulation in the same manner as momentum fluxes near the core, but with smaller magnitude and areal coverage. The contracting outflow maximum thus appeared to represent the upper branch of a secondary circulation excited primarily by the eddy momentum fluxes. The reintensification of hurricanes is often directly associated with formation of a wind maximum at inner radii which replaces or reinforces the original eye wall as it contracts. Such a feature was seen in reconnaissance data in Elena at the time the secondary circulation reached inner radii. It is speculated that the relatively weak secondary circulation evolved into a local wind maximum through the actions of diabatic heat sources. The approaching trough is thus viewed not as a direct cause of deepening, but as a catalyst which organized the diabatic sources in such a way as to excite internal instabilities of the system.
    • Download: (1.354Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      External Influences on Hurricane Intensity. Part II: Vertical Structure and Response of the Hurricane Vortex

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156587
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMolinari, John
    contributor authorVollaro, David
    date accessioned2017-06-09T14:29:51Z
    date available2017-06-09T14:29:51Z
    date copyright1990/08/01
    date issued1989
    identifier issn0022-4928
    identifier otherams-20367.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156587
    description abstractThe vertical structure of the interaction of Hurricane Elena (1985) with a baroclinic wave was evaluated using analyses from the European Centre for Medium Range Weather Forecasting. During the period of interaction, azimuthal eddies produced a localized flux convergence of cyclonic angular momentum in the upper troposphere which shifted to progressively smaller radii prior to major secondary deepening of the storm. These momentum fluxes decayed above and below the outflow layer. Eddy heat fluxes showed maximum cooling in the middle and upper troposphere and warming in the lower stratosphere, reflecting the temperature structure of the baroclinic wave as it moved into the hurricane volume. The response of the hurricane vortex to the fluxes of heat and angular momentum was determined by solution of Eliassen's balanced vortex equation. The balanced solutions showed a band of upward motion, with deep inflow and narrow outflow, which shifted inward from the 500 km radius to the hurricane core in the 24 hours prior to the secondary deepening. The position and timing of this feature corresponded to the contracting outflow maximum found in Part I. Eddy heat fluxes contributed to the induced circulation in the same manner as momentum fluxes near the core, but with smaller magnitude and areal coverage. The contracting outflow maximum thus appeared to represent the upper branch of a secondary circulation excited primarily by the eddy momentum fluxes. The reintensification of hurricanes is often directly associated with formation of a wind maximum at inner radii which replaces or reinforces the original eye wall as it contracts. Such a feature was seen in reconnaissance data in Elena at the time the secondary circulation reached inner radii. It is speculated that the relatively weak secondary circulation evolved into a local wind maximum through the actions of diabatic heat sources. The approaching trough is thus viewed not as a direct cause of deepening, but as a catalyst which organized the diabatic sources in such a way as to excite internal instabilities of the system.
    publisherAmerican Meteorological Society
    titleExternal Influences on Hurricane Intensity. Part II: Vertical Structure and Response of the Hurricane Vortex
    typeJournal Paper
    journal volume47
    journal issue15
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2
    journal fristpage1902
    journal lastpage1918
    treeJournal of the Atmospheric Sciences:;1989:;Volume( 047 ):;issue: 015
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian