YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mean Flow Adjustment during Life Cycles of Baroclinic Waves

    Source: Journal of the Atmospheric Sciences:;1988:;Volume( 046 ):;issue: 012::page 1724
    Author:
    Gutowski, William J.
    ,
    Branscome, Lee E.
    ,
    Stewart, Douglas A.
    DOI: 10.1175/1520-0469(1989)046<1724:MFADLC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: We use a global, primitive equation model to study the evolution of waves growing in a zonal mean state that is initially baroclinically unstable. The waves produce changes in the zonal mean state that we compare with changes predicted by baroclinic adjustment theories We examine mean state adjustment by representative zonal wavenumbers 3, 7 or 12. In the absence of surface processes, as the wave grows to its maximum amplitude, it reduces the zonal mean state's potential vorticity gradient through the lower troposphere, in accord with adjustment theories. Over the latitudes with largest wave amplitude, changes in the static stability and the zonal wind's vertical shear contribute about equally to the potential vorticity gradient adjustment. However, during the last day of a wave's growth, momentum fluxes strengthen the barotropic component of the zonal wind and the potential vorticity gradient in the middle troposphere, changes that are not anticipated by adjustment theory. The static stability adjustment occurs across the latitudinal band occupied by the growing wave. Further experiments show that the static stability adjustment alone is very effective in reducing the instability of the flow and restricting the maximum amplitude attained by growing waves. Adjustment of the zonal wind's vertical shear is confined to a narrower range of latitude and is partially reversed as the wave decays. Additional experiments indicate that the barotropic governor mechanism of James does not contribute strongly to the mean flow's stabilization in the cases we examine, though it way inhibit secondary growth at latitudes adjacent to the initial disturbance. When the model includes surface friction and heat flux, the waves adjust the zonal mean state less effectively, especially near the surface. Surface heat flux inhibits static stability adjustment, and surface friction inhibits adjustment of the zonal wind's vertical shear. In the absence of surface processes, the adjusted state produced by the wave is quite different from observed mean structures. However, with both surface processes included, the vertical profiles of the adjusted static stability, wind shear and potential vorticity gradient are similar to observed profiles. The model' interaction between the waves and the mean flow corroborates results from previous studies of baroclinic adjustment that used simpler representations of atmospheric dynamics.
    • Download: (1.142Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mean Flow Adjustment during Life Cycles of Baroclinic Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156288
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorGutowski, William J.
    contributor authorBranscome, Lee E.
    contributor authorStewart, Douglas A.
    date accessioned2017-06-09T14:29:02Z
    date available2017-06-09T14:29:02Z
    date copyright1989/06/01
    date issued1988
    identifier issn0022-4928
    identifier otherams-20098.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156288
    description abstractWe use a global, primitive equation model to study the evolution of waves growing in a zonal mean state that is initially baroclinically unstable. The waves produce changes in the zonal mean state that we compare with changes predicted by baroclinic adjustment theories We examine mean state adjustment by representative zonal wavenumbers 3, 7 or 12. In the absence of surface processes, as the wave grows to its maximum amplitude, it reduces the zonal mean state's potential vorticity gradient through the lower troposphere, in accord with adjustment theories. Over the latitudes with largest wave amplitude, changes in the static stability and the zonal wind's vertical shear contribute about equally to the potential vorticity gradient adjustment. However, during the last day of a wave's growth, momentum fluxes strengthen the barotropic component of the zonal wind and the potential vorticity gradient in the middle troposphere, changes that are not anticipated by adjustment theory. The static stability adjustment occurs across the latitudinal band occupied by the growing wave. Further experiments show that the static stability adjustment alone is very effective in reducing the instability of the flow and restricting the maximum amplitude attained by growing waves. Adjustment of the zonal wind's vertical shear is confined to a narrower range of latitude and is partially reversed as the wave decays. Additional experiments indicate that the barotropic governor mechanism of James does not contribute strongly to the mean flow's stabilization in the cases we examine, though it way inhibit secondary growth at latitudes adjacent to the initial disturbance. When the model includes surface friction and heat flux, the waves adjust the zonal mean state less effectively, especially near the surface. Surface heat flux inhibits static stability adjustment, and surface friction inhibits adjustment of the zonal wind's vertical shear. In the absence of surface processes, the adjusted state produced by the wave is quite different from observed mean structures. However, with both surface processes included, the vertical profiles of the adjusted static stability, wind shear and potential vorticity gradient are similar to observed profiles. The model' interaction between the waves and the mean flow corroborates results from previous studies of baroclinic adjustment that used simpler representations of atmospheric dynamics.
    publisherAmerican Meteorological Society
    titleMean Flow Adjustment during Life Cycles of Baroclinic Waves
    typeJournal Paper
    journal volume46
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1989)046<1724:MFADLC>2.0.CO;2
    journal fristpage1724
    journal lastpage1737
    treeJournal of the Atmospheric Sciences:;1988:;Volume( 046 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian