YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large-Eddy Simulation of the Convective Atmospheric Boundary Layer

    Source: Journal of the Atmospheric Sciences:;1988:;Volume( 046 ):;issue: 011::page 1492
    Author:
    Mason, P. J.
    DOI: 10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Large-eddy simulations of a free convective atmospheric boundary layer with an overlying capping inversion are considered. Attention is given to the dependence of the results upon the various factors influencing the simulation: the subgrid model, the domain size, and the mesh resolution. By providing artificial constraints upon the convection the results also provide extra insight into the underlying dynamics. The gross features of the boundary layer, such as the overall energy budget, are not sensitive to the details of the simulations but a number of important factors are revealed. It has been found that near the surface the subgrid diffusivity must be larger than is usually supposed, in order for the vertical velocity skewness to have the correct sign. This region of the flow has a significant subgrid-scale heat flux and it seems that the subgrid model requires improvement in such cases. A revised model which under statically unstable conditions allows the mixing-length of the subgrid-scale turbulence to depend on the flow stability is found to give improved results. The domain size and mesh spacings have a significant influence upon the results and need a setting which allows resolution of the main, freely occurring scales of motion. The entrainment at the capping inversion is remarkable in its insensitivity to all factors. Finally, the higher resolution simulations provide a detailed view of the flow structure of the convective boundary layer. Downdrafts cover a large fraction of the surface area, and near the surface the flow converges into smaller areas comprising long narrow regions of updrafts. The plumes which penetrate through the depth of the boundary layer to the inversion mainly occur over the inter-sections of these long narrow regions of updrafts.
    • Download: (2.277Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large-Eddy Simulation of the Convective Atmospheric Boundary Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156272
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMason, P. J.
    date accessioned2017-06-09T14:28:58Z
    date available2017-06-09T14:28:58Z
    date copyright1989/06/01
    date issued1988
    identifier issn0022-4928
    identifier otherams-20083.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156272
    description abstractLarge-eddy simulations of a free convective atmospheric boundary layer with an overlying capping inversion are considered. Attention is given to the dependence of the results upon the various factors influencing the simulation: the subgrid model, the domain size, and the mesh resolution. By providing artificial constraints upon the convection the results also provide extra insight into the underlying dynamics. The gross features of the boundary layer, such as the overall energy budget, are not sensitive to the details of the simulations but a number of important factors are revealed. It has been found that near the surface the subgrid diffusivity must be larger than is usually supposed, in order for the vertical velocity skewness to have the correct sign. This region of the flow has a significant subgrid-scale heat flux and it seems that the subgrid model requires improvement in such cases. A revised model which under statically unstable conditions allows the mixing-length of the subgrid-scale turbulence to depend on the flow stability is found to give improved results. The domain size and mesh spacings have a significant influence upon the results and need a setting which allows resolution of the main, freely occurring scales of motion. The entrainment at the capping inversion is remarkable in its insensitivity to all factors. Finally, the higher resolution simulations provide a detailed view of the flow structure of the convective boundary layer. Downdrafts cover a large fraction of the surface area, and near the surface the flow converges into smaller areas comprising long narrow regions of updrafts. The plumes which penetrate through the depth of the boundary layer to the inversion mainly occur over the inter-sections of these long narrow regions of updrafts.
    publisherAmerican Meteorological Society
    titleLarge-Eddy Simulation of the Convective Atmospheric Boundary Layer
    typeJournal Paper
    journal volume46
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2
    journal fristpage1492
    journal lastpage1516
    treeJournal of the Atmospheric Sciences:;1988:;Volume( 046 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian