YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lightning Rates Relative to Tornadic Storm Evolution on 22 May 1981

    Source: Journal of the Atmospheric Sciences:;1988:;Volume( 046 ):;issue: 002::page 221
    Author:
    MacGorman, Donald R.
    ,
    Burgess, Donald W.
    ,
    Mazur, Vladislav
    ,
    Rust, W. David
    ,
    Taylor, William L.
    ,
    Johnson, Brenda C.
    DOI: 10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: On 22 May 1981, we acquired lightning and Doppler radar data on two tornadic storms in Oklahoma. Cloud-to-ground lightning flash rates were measured with a magnetic direction-finder network, and total flash rates in the vicinity of the mesocyclone were measured with an L-band radar. In both storms, there was no clear relationship between tornado occurrence and ground flash rates of the storm as a whole, but the stroke rate of each storm was highest after it stopped producing tornadoes. For the second storm, we examined both intracloud and cloud-t-ground lightning rates relative to mesocyclone evolution, analyzing the region within 10 km of the mesocyclone core. Our analysis began during initial stages of the mesocyclone core associated with the fourth and strongest of five tornadoes in the storm and continued until all mesocyclone cores in the storm dissipated. During this period, intracloud lightning flash rates reached a peak of almost 14 min?1 approximately 10 min after the peak in cyclonic shear at the 6 km level and at the same time as the peak in cyclonic shear at the 1.5 km level. The peak in intracloud rates also occurred 5?10 min after the peak in the area within 40 and 45 dBZ contours at the 8 km level and at about the same time as the peak in the area within 50 dBZ contours at 8 km and within 40 dBZ at 6 km. However, ground flash rates in the mesocyclone region were usually less than 1 min?1 during periods when intracloud rates were high and were negatively correlated with cyclonic shear at both 1.5 and 6 km. The ground flash rate was the last parameter to peak, approximately 15 min after intracloud lightning and a few minutes after the latest reflectivity area (the area having >55 dBZ at the 1 km level). We suggest that intracloud rates were governed, in part, by particle interactions during the growth in reflectivity at 7?9 km and, in part, by some process associated with the evolution of cyclonic shear at low altitudes. Earlier studies of tornado storms indicate that the evolution of updrafts and downdrafts affects the evolution of both reflectivity and low-altitude cyclonic shear and so, as in previous storm studies, updraft evolution will affect intracloud rates. We suggest that the peaks in ground flash rates resulted from increasing the distance between the main positive and negative charge centers, from the sedimentation of negative charge to lower altitudes, or from the generation or advection of positive charge below the main negative charge. Although these data are from only a single day, consideration of sferics data from previous studies suggests that 1) most tornadic storms (80% or more) have an increase in total flash rates near the time of the tornado, and 2) the increase in total flash rates is often dominated by intracloud flashes.
    • Download: (2.762Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lightning Rates Relative to Tornadic Storm Evolution on 22 May 1981

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156175
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMacGorman, Donald R.
    contributor authorBurgess, Donald W.
    contributor authorMazur, Vladislav
    contributor authorRust, W. David
    contributor authorTaylor, William L.
    contributor authorJohnson, Brenda C.
    date accessioned2017-06-09T14:28:44Z
    date available2017-06-09T14:28:44Z
    date copyright1989/01/01
    date issued1988
    identifier issn0022-4928
    identifier otherams-19998.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156175
    description abstractOn 22 May 1981, we acquired lightning and Doppler radar data on two tornadic storms in Oklahoma. Cloud-to-ground lightning flash rates were measured with a magnetic direction-finder network, and total flash rates in the vicinity of the mesocyclone were measured with an L-band radar. In both storms, there was no clear relationship between tornado occurrence and ground flash rates of the storm as a whole, but the stroke rate of each storm was highest after it stopped producing tornadoes. For the second storm, we examined both intracloud and cloud-t-ground lightning rates relative to mesocyclone evolution, analyzing the region within 10 km of the mesocyclone core. Our analysis began during initial stages of the mesocyclone core associated with the fourth and strongest of five tornadoes in the storm and continued until all mesocyclone cores in the storm dissipated. During this period, intracloud lightning flash rates reached a peak of almost 14 min?1 approximately 10 min after the peak in cyclonic shear at the 6 km level and at the same time as the peak in cyclonic shear at the 1.5 km level. The peak in intracloud rates also occurred 5?10 min after the peak in the area within 40 and 45 dBZ contours at the 8 km level and at about the same time as the peak in the area within 50 dBZ contours at 8 km and within 40 dBZ at 6 km. However, ground flash rates in the mesocyclone region were usually less than 1 min?1 during periods when intracloud rates were high and were negatively correlated with cyclonic shear at both 1.5 and 6 km. The ground flash rate was the last parameter to peak, approximately 15 min after intracloud lightning and a few minutes after the latest reflectivity area (the area having >55 dBZ at the 1 km level). We suggest that intracloud rates were governed, in part, by particle interactions during the growth in reflectivity at 7?9 km and, in part, by some process associated with the evolution of cyclonic shear at low altitudes. Earlier studies of tornado storms indicate that the evolution of updrafts and downdrafts affects the evolution of both reflectivity and low-altitude cyclonic shear and so, as in previous storm studies, updraft evolution will affect intracloud rates. We suggest that the peaks in ground flash rates resulted from increasing the distance between the main positive and negative charge centers, from the sedimentation of negative charge to lower altitudes, or from the generation or advection of positive charge below the main negative charge. Although these data are from only a single day, consideration of sferics data from previous studies suggests that 1) most tornadic storms (80% or more) have an increase in total flash rates near the time of the tornado, and 2) the increase in total flash rates is often dominated by intracloud flashes.
    publisherAmerican Meteorological Society
    titleLightning Rates Relative to Tornadic Storm Evolution on 22 May 1981
    typeJournal Paper
    journal volume46
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2
    journal fristpage221
    journal lastpage251
    treeJournal of the Atmospheric Sciences:;1988:;Volume( 046 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian