YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Calculating Tropical Winds from Time Mean Sea Level Pressure Fields

    Source: Journal of the Atmospheric Sciences:;1988:;Volume( 045 ):;issue: 021::page 3269
    Author:
    Murphree, Tom
    ,
    Van Den Dool, Huug
    DOI: 10.1175/1520-0469(1988)045<3269:CTWFTM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The time-mean tropical surface momentum balance is investigated with a simple model that calculates tropical surface winds from time mean sea level pressure fields. The model domain is the global tropical strip centered on the equator with lateral boundaries at ±30° latitude. Steady state surface winds are numerically calculated from the nonlinear horizontal momentum equations, with forcing from observed climatological monthly mean sea level pressures and prescribed lateral boundary winds. Dissipation is parameterized by linear damping and diffusion. Comparisons of model winds with observed climatological monthly mean winds show realistic simulations in most regions and in all months. The poorest simulations occur in the meridional component of the wind in near-equatorial areas of strongly convergent or weak winds. In these areas, and in the near-equatorial region generally, diffusion processes make a significant positive contribution to the realism of the model winds. Horizontal nonlinear advection also improves the simulation near the equator, though to a smaller degree. The generally skillful model winds refute the conventional idea that weak gradients make the tropical pressure field a poor tool for calculating tropical winds. To the contrary, tropical pressure fields contain substantial information about associated winds. Thus, a relatively complete momentum balance can be identified for the major features of the time-mean tropical wind field.
    • Download: (1.097Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Calculating Tropical Winds from Time Mean Sea Level Pressure Fields

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156094
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMurphree, Tom
    contributor authorVan Den Dool, Huug
    date accessioned2017-06-09T14:28:31Z
    date available2017-06-09T14:28:31Z
    date copyright1988/11/01
    date issued1988
    identifier issn0022-4928
    identifier otherams-19924.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156094
    description abstractThe time-mean tropical surface momentum balance is investigated with a simple model that calculates tropical surface winds from time mean sea level pressure fields. The model domain is the global tropical strip centered on the equator with lateral boundaries at ±30° latitude. Steady state surface winds are numerically calculated from the nonlinear horizontal momentum equations, with forcing from observed climatological monthly mean sea level pressures and prescribed lateral boundary winds. Dissipation is parameterized by linear damping and diffusion. Comparisons of model winds with observed climatological monthly mean winds show realistic simulations in most regions and in all months. The poorest simulations occur in the meridional component of the wind in near-equatorial areas of strongly convergent or weak winds. In these areas, and in the near-equatorial region generally, diffusion processes make a significant positive contribution to the realism of the model winds. Horizontal nonlinear advection also improves the simulation near the equator, though to a smaller degree. The generally skillful model winds refute the conventional idea that weak gradients make the tropical pressure field a poor tool for calculating tropical winds. To the contrary, tropical pressure fields contain substantial information about associated winds. Thus, a relatively complete momentum balance can be identified for the major features of the time-mean tropical wind field.
    publisherAmerican Meteorological Society
    titleCalculating Tropical Winds from Time Mean Sea Level Pressure Fields
    typeJournal Paper
    journal volume45
    journal issue21
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1988)045<3269:CTWFTM>2.0.CO;2
    journal fristpage3269
    journal lastpage3282
    treeJournal of the Atmospheric Sciences:;1988:;Volume( 045 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian